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Abstract. Let d ≥ 1 be fixed. Let F be a number field of degree d, and let E/F be an elliptic
curve. Let E(F )tors be the torsion subgroup of E(F ). In 1996, Merel proved the uniform boundedness
conjecture, i.e., there is a constant B(d), which depends on d but not on the chosen field F or on
the curve E/F , such that the size of E(F )tors is bounded by B(d). Moreover, Merel gave a bound
(exponential in d) for the largest prime that may be a divisor of the order of E(F )tors. In 1996,
Parent proved a bound (also exponential in d) for the largest p-power order of a torsion point that
may appear in E(F )tors. It has been conjectured, however, that there is a bound for the size of
E(F )tors that is polynomial in d. In this article we show that under certain hypotheses there is a
linear bound for the largest p-power order of a torsion point defined over F , which in fact is linear
in the maximum ramification index of a prime ideal of the ring of integers F over (p).

1. Introduction

Let F be a number field, and let E/F be an elliptic curve defined over F . The Mordell–Weil theo-
rem states that E(F ), the set of F -rational points on E, can be given the structure of a finitely gen-
erated abelian group. In particular, the torsion subgroup of E(F ), henceforth denoted by E(F )tors,
is a finite group. In 1996, Merel proved that there is a uniform bound for the size of E(F )tors, which
is independent of the chosen curve E/F and, in fact, the bound only depends on the degree of F/Q.
The bounds were improved by Oesterlé, and later by Parent in 1999.

Definition 1.1. For each n ≥ 1, we define Sn(d) as the set of primes p for which there exists a
number field F of degree ≤ d and an elliptic curve E/F such that E(F ) contains a point of exact
order pn. We also define T (d) as the supremum of |E(F )tors|, over all F and E as above. Finally, we
define Snnon-CM(d) (resp. SnCM(d)) as before, except that we only consider elliptic curves E/F without
CM (resp. with CM).

We remark that Sn+1(d) ⊆ Sn(d) for all n ≥ 1, and if p ∈ Sn(d), then pn ≤ T (d). Mazur ([31]) has
shown that S1(d) = {2, 3, 5, 7} and T (1) = 16. Results of Kenku, Kamienny, and Momose imply that
S1(2) = {2, 3, 5, 7, 11, 13} and T (2) = 24. Parent determined S1(3) = S1(2). In addition, Derickx,
Kamienny, Stein, and Stoll ([6]) have shown that S1(4) = S1(3) ∪ {17}, S1(5) = S1(4) ∪ {19},
S1(6) = S1(5) ∪ {37}, and S1(7) ⊆ {p ≤ 23} ∪ {37, 43, 59, 61, 67, 71, 73, 113, 127}. Let us cite Merel,
Oesterlé, and Parent’s work more precisely (Oesterlé’s bound is unpublished, but appears in [6]).

Theorem 1.2 (Merel, [33], and Parent, [37]). Let d > 1 be a fixed integer.

(1) (Merel, 1996) T (d) is finite. Moreover, if p ∈ S1(d), then p ≤ d3d2.
(2) (Oesterlé, 1996) If p ∈ S1(d), then p ≤ (1 + 3d/2)2.
(3) (Parent, 1999) If p ∈ Sn(d), then pn ≤ 129(5d − 1)(3d)6.
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It is a “folklore” conjecture that T (d) should be sub-exponentially bounded (see for instance [12],
[15]). We reproduce an explicit version of the conjecture, as in Conjecture 1 of [3].

Conjecture 1.3. There is a constant C1 such that T (d) ≤ C1 · d log log d, for all d ≥ 1.

Flexor and Oesterlé ([12]) have shown that if E/F has at least one place of additive reduction,
then |E(F )tors| ≤ 48d, and if it has at least two places of additive reduction, then |E(F )tors| ≤ 12.
Hindry and Silverman ([15, Théorème 1]) show that if E/F has everywhere good reduction then
|E(F )tors| ≤ 1977408 · d log d. Turning our attention once again to Sn(d), we propose the following
conjecture. Here ϕ(·) is the Euler phi function.

Conjecture 1.4. There is a constant C2 such that if p ∈ Sn(d), then ϕ(pn) ≤ C2 · d, for all d ≥ 1.

If we restrict our attention to CM curves, then Conjecture 1.4 follows from work of Silverberg
([42]), and Prasad and Yogananda ([38]; see also [3]), and the constant is ≤ 6, i.e., if p ∈ SnCM(d),
then ϕ(pn) ≤ 6d. See Theorem 6.9 below for a precise statement. In addition, in [28], the author has
shown that Conjecture 1.4 holds (with C2 = 24) when E/F has potential supersingular reduction at
a prime above p.

Theorem 1.5 ([28, Theorem 1.3]). Let p be a prime, let d > 1 be a fixed integer, let F be a number
field of degree ≤ d, and let E/F be an elliptic curve. Suppose that F has a prime P over p such that
E/F has potential good supersingular reduction at P. Then,

ϕ(pn) ≤ 24e(P|p) ≤ 24d,

where ϕ(·) is the Euler phi function, and e(P|p) is the ramification index of P in F/Q.

In this article, we restrict our study of E(F )tors to the simpler case of elliptic curves E/F that
arise from elliptic curves defined over a fixed number field L (contained in F ), whose base field has
been extended to F .

Definition 1.6. Let L be a fixed number field, let d be an integer with d ≥ [L : Q], and let SnL(d)
be the set of pairs (p, F ), where p is a prime for which there exists a finite extension F/L of number
fields with [F : Q] ≤ d, and an elliptic curve E/L (either without CM, or with CM by a maximal
order), such that E(F )tors contains a point of exact order pn. If Σ ⊆ L is specified, then SnL(d,Σ) is as
before, except that we only consider elliptic curves E with j(E) 6∈ Σ. Finally, we define SnL,max-CM(d)

when we restrict to curves E/L with CM by a maximal order.

In [27], we showed that if p ∈ S1
Q(d) with p ≥ 11 and p 6= 13, then ϕ(p) ≤ 3d, and if p 6= 37, then

ϕ(p) ≤ 2d. Moreover, we gave a conjectural formula for S1
Q(d), and showed that the formula holds

for all 1 ≤ d ≤ 42. Our theorems here provide bounds in terms of certain ramification indices that
we define next. In the rest of the paper, if F is a number field or a local field, then OF denotes its
ring of integers.

Definition 1.7. Let p be a prime, and let F/L be an extension of number fields. We define
emin(p, F/L) (resp. emax(p, F/L)) as the smallest (resp. largest) ramification index e(P|℘) for a
prime P of OF over a prime ℘ of OL lying above the rational prime p.

Now we can state our main theorems.

Theorem 1.8. Let F be a number field with degree [F : Q] = d ≥ 1, and let p be a prime such that
(p, F ) ∈ Snmax-CM(d). Then,

ϕ(pn) ≤ 12 · emax(p, F/Q) ≤ 12d.
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Theorem 1.9. Let L be a number field, and let p > 2 be a prime with (p, F ) ∈ SnL(d). Then, there
is a constant CL such that

ϕ(pn) ≤ CL · emax(p, F/Q) ≤ CL · d.
Moreover, there is a computable finite set ΣL such that if (p, F ) ∈ SnL(d,ΣL), then

ϕ(pn) ≤ 588 · emax(p, F/Q) ≤ 588 · d.

The finite set ΣL is computable (or decidable) in the sense that given j0 ∈ L, there is an algorithm
to check whether j0 belongs to ΣL. We emphasize here that the notation SnL(d), as in Definition
1.6, excludes elliptic curves with CM by non-maximal orders for technical reasons (that we hope
to address in future work). However, there are only finitely many elliptic curves with CM by non-
maximal orders defined over L, so such j-invariants could be included in ΣL, and the second bound
in Theorem 1.9 would apply to all elliptic curves E defined over L with j(E) not in the finite set ΣL.

When L = Q, the set ΣL can be made explicit (it is formed by the six j-invariants without CM
of Table 1 of Section 3), and our methods yield an improved bound.

Theorem 1.10. If p > 2 and (p, F ) ∈ SnQ(d), then ϕ(pn) ≤ 222 · emax(p, F/Q) ≤ 222 · d.

In light of Theorems 1.5, 1.8, 1.9, and 1.10, we revisit Conjecture 1.4 and propose the following
stronger version.

Conjecture 1.11. There is a constant C3 such that if (p, F ) ∈ Sn(d) for a prime p and an extension
F/Q of degree ≤ d, then

ϕ(pn) ≤ C3 · emax(p, F/Q) ≤ C3 · d.

Theorem 1.5 shows Conjecture 1.11 when E/F has a prime of potential supersingular reduction
above p, with C3 = 24. When E/F has at least one prime P of additive reduction, then Conjecture
1.11 follows from the aforementioned work of Flexor and Oesterlé ([12, Théorèm 2 and Remarque
2]), for they in fact show that |E(F )tors| ≤ 48e(P|p), where e(P|p) denotes the ramification index of
P over (p) in F/Q.

Our theorems follow from explicit lower bounds (divisibility properties, in fact) on the ramification
of primes above p, in the extensions generated by points of p-power order, and recent work of Larson
and Vaintrob on isogenies ([23]). In Section 2 we state our refined bound (Theorem 2.1), we specialize
the bounds to elliptic curves over Q in Theorem 2.2 (which proves Theorem 1.10). The proof of
Theorem 1.8 will be delayed to Section 6.3 (see Theorem 6.10), and we put everything together to
prove Theorem 1.9 in Section 8.

Acknowledgements. The author would like to thank Kevin Buzzard, Pete Clark, Brian Conrad,
Harris Daniels, Benjamin Lundell, Robert Pollack, James Stankewicz, Jeremy Teitelbaum, Ravi
Ramakrishna, John Voight, Felipe Voloch and David Zywina for their helpful suggestions and com-
ments. In addition, the author would like to express his gratitude to the anonymous referees for very
detailed reports, and pointing out a crucial oversight in an earlier version of the paper.

2. Refined bounds

Let L be a number field, let p be a prime, let n ≥ 1, and let ζ = ζpn be a primitive pn-th root
of unity. Let ℘ be a prime ideal of the ring of integers OL of L lying above p. The ramification
index of the primes above ℘ in the extension L(ζ)/L is a divisor of ϕ(pn), and it is divisible by
ϕ(pn)/ gcd(ϕ(pn), e(℘|p)). In this article we study the ramification above p in the extension L(R)/L,
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where R is a torsion point of exact order pn in an elliptic curve E defined over L. We show the
following:

Theorem 2.1. Let p > 2 be a prime. Let L be a number field, and let ℘ be a prime ideal of OL with
ramification index e(℘|p) ≥ 1 in L/Q. Let E/L be an elliptic curve, and let a ≥ 1 be an integer such
that one of the following conditions is satisfied:

(1) E/L does not admit an L-rational isogeny of degree pa, or
(2) Let Lnr

℘ be the maximal unramified extension of L℘, the completion of L at ℘, and let K/Lnr
℘

is the smallest extension such that E/K has good or multiplicative reduction. If E/L admits
an L-rational isogeny φ of degree p, such that ker(φ) = 〈S〉 ⊂ E[p], then the ramification
index of K(S)/K is > 1, or the ramification index of ℘ in the Galois extension L(S)/L
satisfies that the quotient e(℘,L(S)/L)/ gcd(e(℘,L(S)/L), e(K/Lnr

℘ )) > 1. If so, let a = 1.
Let R ∈ E[pn] be an arbitrary point of exact order pn, for some n ≥ a. Then, there is a number
c = c(E/L,R, ℘), with 1 ≤ c ≤ 12e(℘|p), and a prime ΩR of L(R) above ℘ such that the ramification
index e(ΩR|℘) is divisible either by

ϕ(pn)/ gcd(ϕ(pn), c · pa−1), or pn−a+1.

If e(℘|p) = 1, then there is a prime ΩR of L(R) above ℘ such that e(ΩR|℘) is divisible either by

ϕ(pn)/ gcd(ϕ(pn), t · pa−1), or pn−a+1,

where t ∈ {6, 9} if p = 3, and t ∈ {4, 6} if p > 3.

Proof. Let E/L be an elliptic curve, and let ℘ be a prime ideal of OL. Then, E/L either has potential
multiplicative reduction, or potential good reduction at ℘, which may be ordinary or supersingular.

• The case of potential multiplicative reduction is treated in Section 5. In particular, if E/L
satisfies hypothesis (1) or (2), then Theorem 5.1, parts (e) and (f), imply that there is a
prime ΩR of L(R) above ℘ such that the ramification index e(ΩR|℘) is divisible either by

ϕ(pn)/ gcd(ϕ(pn), 2e(℘|p)pa−1), or pn−a+1,

and the theorem follows in this case.
• The case of potential good ordinary reduction is treated in Section 6.1. In particular, if E/L
satisfies hypotheses (1) or (2), then Theorem 6.3 implies that there is a prime ΩR of L(R)
above ℘ such that the ramification index e(ΩR|℘) is divisible either by

ϕ(pn)/ gcd(ϕ(pn), e · pa−1) or pn−a+1,

where e = e(K/Qp) is the ramification index of K/Qp. If p = 3, then ϕ(pn) = 2 · 3n−1 and
e is a divisor of 12e(℘|p), so if e(℘|p) = 1 then ϕ(pn)/ gcd(ϕ(pn), e · pa−1) is divisible by
ϕ(pn)/ gcd(ϕ(pn), t · pa−1) with t = 9 or 6. If p > 3, then e is a divisor of either 4e(℘|p) or
6e(℘|p), and the theorem follows in this case.
• The case of potential good supersingular reduction is treated in Section 6.2, where we quote
our results from previous works ([26] and [28]). Theorem 6.7 implies that there is a num-
ber c = c(E/L,R, ℘) with 1 ≤ c ≤ 12e(℘|p) (with c ≤ 6e(℘|p) if p > 3), such that the
ramification index e(ΩR|℘) of any prime ΩR above ℘ in the extension L(R)/L is divisi-
ble by ϕ(pn)/ gcd(c, ϕ(pn)). Moreover, if e(℘|p) = 1 and p > 3, then e(ΩR|℘) is divisi-
ble by (p2 − 1)p2(n−1)/6, or (p − 1)p2(n−1)/ gcd(p − 1, 4), therefore it is also divisible by



UNIFORM BOUNDEDNESS 5

ϕ(pn)/ gcd(ϕ(pn), t) with t = 4 or 6. If d = 1 and p = 3, then e(ΩR|℘) is divisible by
ϕ(3n)/ gcd(ϕ(3n), t) with t = 6 or 9.

�

When L = Q, the previous theorem can be improved because we have a complete classification
of non-cuspidal Q-points on the modular curves X0(N), which correspond to all possible Q-rational
isogenies of elliptic curves over Q, as discussed in Section 3.

Theorem 2.2. Let E/Q be an elliptic curve. For each prime p, we define b = b(p) to be

p 3 5 7 13 37 else

b(p) 3 3 2 2

{
2, if j(E) = −7 · 113

1, otherwise
1

Suppose that R ∈ E(Q) is a torsion point of exact order pn with n ≥ b(p) and p > 2. Then, there is
a prime ΩR of Q(R) above p such that e(ΩR|p) is divisible either by

ϕ(pn)/ gcd(ϕ(pn), t · pb−1), or pn−b+1,

where t ∈ {6, 9} if p = 3, and t ∈ {4, 6} if p > 3. In particular,

ϕ(pn) ≤ t · pb−1 · e(ΩR|p) ≤ 222 · e(ΩR|p).

Proof. Let E/Q be an elliptic curve, and let p > 2 be a prime. By Theorem 3.3, the curve E cannot
admit isogenies of degree pa(Q,p), where a(Q, p) is given by the following table:

p 3 5 7 11 13 17 19 37 43 67 163 else

a(Q, p) 4 3 2 2 2 2 2 2 2 2 2 1.

Suppose first that E/Q does not admit isogenies of degree pb(p). Then Theorem 2.1 implies part
(a). Thus, it remains to deal with those elliptic curves E/Q that admit isogenies of degree pb(p) with
b(p) < a(Q, p), i.e., E/Q admits an isogeny of degree 11, 17, 19, 27, 37, 43, 67, or 163. By Theorem
3.3, there are only finitely many such j-invariants, and they are given in Table 1 of Section 3.

Let (j0, p) be any of the j-invariants that are listed in Table 1, with p 6= 37, and let E/Q be an
elliptic curve with j(E) = j0. Then E/Q has potential supersingular reduction at p (see Section 6.2,
Table 2). Let R ∈ E[pn] be a point of exact order pn. Theorem 6.8 shows that the ramification index
of any prime ΩR that lies above p in the extension Q(R)/Q is divisible by (p − 1)p2n−2/2 if p > 3
and n ≥ 1, and by 32n−4 if p = 3 and n ≥ 3. In particular, e(ΩR|p) is divisible by ϕ(pn)/2 for p > 3
(which in turn is divisible by ϕ(pn)/ gcd(ϕ(pn), t) for t = 4 or t = 6 as claimed), and when p = 3,
it is divisible by 3n−2, which is divisible by ϕ(3n)/ gcd(ϕ(3n), t · 3b(3)−1), for t = 6 or 9, because
b(3) = 3.

It remains to consider the two j-invariants with a Q-rational isogeny of degree 37, namely j0 =
−7 · 113 and j′0 = −7 · 1373 · 20833. Let E/Q and E′/Q be elliptic curves with j-invariants j(E) = j0
and j(E′) = j′0. Let f = 1 if E/Q has good reduction at p = 37, and let f = 2 otherwise (and define
f ′ similarly). Then Proposition 6.4 shows the following:

• Let R ∈ E be a point of exact order 37n, for n ≥ 2. Then, there is a prime ΩR of Q(R) over
(37) such that e(ΩR|37) is divisible by ϕ(37n)/37 = ϕ(37n−1), or f · 37n−1.



6 ÁLVARO LOZANO-ROBLEDO

• Let R ∈ E′ be a point of exact order 37n, for n ≥ 1. Then, there is a prime ΩR of Q(R) over
(37) such that e(ΩR|37) is divisible by ϕ(37n), or f ′ · 37n.

This concludes the proof of the first claim of part (a). The second claim follows directly from the
first, by noting that the maximum value of t · pb−1 is 222, as t ≤ 6 when p > 3. �

Remark 2.3. Our methods here can also show that, with the notation of Theorem 2.2, if R ∈ E[pn]
is a point of exact order pn, with n ≥ b(p), and K/Q is a Galois extension such that Q(R) ⊆ K,
then the ramification index of p in K/Q, denoted by e(K, p), and the degree of K/Q, are divisible
by

(p− 1)pn−b/2 =
ϕ(pn−b+1)

2
when p is odd, and by ϕ(2n−4) when p = 2. In [25], Lundell and the author had shown a similar
result but under the additional assumption that E/Q is semistable.

3. Rational points on the modular curve X0(N)

Let H be the complex upper half-plane, let N ≥ 1 and let Γ0(N) be the usual congruence subgroup
of SL(2,Z) given by

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) : c ≡ 0 mod N

}
.

The group SL(2,Z) acts on H by linear fractional transformations, i.e., if M =

(
a b
c d

)
∈ SL(2,Z)

then we define an action Mz = az+b
cz+d , for any z ∈ H. Let Y0(N) = H/Γ0(N) and let X0(N) be the

compactification of Y0(N). The finite set of points in X0(N) \ Y0(N) are called the cusps of X0(N),
and can be identified with P1(Q)/Γ0(N). Thus constructed, X0(N) is a projective and non-singular
algebraic curve, and a model defined over Q can be constructed (see [30], §2, or [7], Ch. 7). Moreover,
X0(N) is a moduli space of isomorphism classes of ordered pairs (E,C), where E is a complex elliptic
curve and C is a cyclic subgroup of E of order N (see [7], Section 1.5). In the following theorem, we
provide a formula for the genus of X0(pn). This is a specialization of the formulae that appear in
[45], Prop. 1.40.

Theorem 3.1. Let p be a prime and let a ≥ 1. Then, the genus of X0(pa) is given by

g = 1− ν2

4
− ν3

3
+

1

12
(µ− 6ν∞) ,

where

ν2 =


1 if p = 2 and a = 1,

0 if p = 2 and a > 1,

2 if p ≡ 1 mod 4,

0 if p ≡ 3 mod 4,

, ν3 =


1 if p = 3 and a = 1,

0 if p = 3 and a > 1,

2 if p ≡ 1 mod 3,

0 if p ≡ 2 mod 3,

and

µ− 6ν∞ =

{
(p+ 1)p

a
2
−1(p

a
2 − 6) if a is even, or

p
a−1
2 (p

a−1
2 (p+ 1)− 12) if a is odd.

Using the formula for the genus of X0(pa), we can find all those with genus 1 and 2.
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Corollary 3.2. For a fixed prime number p, the genus of X0(pa) is an increasing function as a
increases. For each i ≥ 1, we define a function ai(p) such that ai = ai(p) is the smallest positive
integer a such that X0(pa) has genus g ≥ i. Then:

(1) a1(p) = 1 for all p ≥ 17, and a2(p) = 1 for all p ≥ 23.
(2) Moreover, the values of a1(p) and a2(p) are given by the following table.

p 2 3 5 7 11 13 17 19 else

a1(p) 5 3 3 2 1 2 1 1 1
a2(p) 6 4 3 3 2 2 2 2 1

The Q-rational points on X0(N) have been described completely in the literature, for all N ≥ 1.
Certainly, one decisive step in their classification was [31], where Mazur dealt with the case when N
is prime. The complete classification of Q-rational points on X0(N), for any N , was completed due
to work of Fricke, Kenku, Klein, Kubert, Ligozat, Mazur and Ogg, among others (see the references
at the bottom of Table 1).

Theorem 3.3. Let N ≥ 2 be a number such that X0(N) has a non-cuspidal Q-rational point asso-
ciated to a non-CM j-invariant. Then, N is one of the numbers in lists (1) or (2) below, and for
each N in one of the two lists X0(N) contains non-CM non-cuspidal Q-rational points:

(1) N ≤ 10, or N = 12, 13, 16, 18 or 25. In this case X0(N) is a curve of genus 0 and its
Q-rational points form an infinite 1-parameter family; or

(2) N = 11, 14, 15, 17, 21, or 37. In this case X0(N) is a curve of genus ≥ 1 and there exist a
finite number of non-CM non-cuspidal Q-rational points on the curve.

In addition, the curve X0(N), for N = 19, 27, 43, 67, or 163, has non-cuspidal Q-rational points, but
all are associated to j-invariants with complex multiplication.

About Table 1. For the convenience of the reader, we have collected in Table 1 a complete list
of all non-cuspidal Q-rational points on the modular curves X0(N), where N = pn is a power of a
prime, and the genus of X0(pn) is positive. For each j-invariant, we indicate whether it has complex
multiplication. If it does, we list the associated quadratic discriminant. These points are well-known,
but seem to be spread out accross the literature. Our main references are [2], [31] and [21], but we
have consulted many other references, which we list at the bottom of the table. The description of
the non-cuspidal Q-rational points for X0(N) when the genus is 0 is not needed in this paper, but
can be found accross the literature. For instance, see [8] eq. (80); [9]; [13], [14] pp. 370-458; [16]
p. 1889; [29]; or the tables in [27].
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Table 1: All non-cuspidal rational points on X0(pn), genus > 0 case

N , genus(X0(N)) j-invariants Examples Conductor CM?

11, g = 1
j = −11 · 1313 121A1, 121C2 112 No

j = −215 121B1, 121B2 112 −11

j = −112 121A2, 121C1 112 No

17, g = 1
j = −172 · 1013/2 14450P1 2 · 52 · 172 No

j = −17 · 3733/217 14450P2 2 · 52 · 172 No

19, g = 1 j = −215 · 33 361A1, 361A2 192 −19

27, g = 1 j = −215 · 3 · 53 27A2, 27A4 33 −27

37, g = 2
j = −7 · 113 1225H1 52 · 72 No

j = −7 · 1373 · 20833 1225H2 52 · 72 No

43, g = 3 j = −218 · 33 · 53 1849A1, 1849A2 432 −43

67, g = 5 j = −215 · 33 · 53 · 113 4489A1, 4489A2 672 −67

163, g = 13 j = −218 · 33 · 53 · 233 · 293 26569A1, 26569A2 1632 −163

Remark: the Cremona labels are the representatives in this class of least conductor.

References: [2, pp. 78-80], [31], [21], [24], [36], [22], [32], [17], [18], [19], [20].

4. Borel subgroups

In order to prove Theorem 2.1 in the cases of potential multiplicative reduction, or poten-
tial good ordinary reduction, we shall need results about ramification indices when the image of
ρE,p : Gal(K/K)→ Aut(E[pn]) is a Borel subgroup of GL(2,Z/pnZ), for some finite extension K of
Lnr
℘ . In this section we study Borel subgroups in general.

Definition 4.1. Let p > 2 be a prime, and n ≥ 1. We say that a subgroup B of GL(2,Z/pnZ) is
Borel if every matrix in B is upper triangular, i.e.,

B ≤
{(

a b
0 c

)
: a, b, c ∈ Z/pnZ, a, c ∈ (Z/pnZ)×

}
.

We say that B is a non-diagonal Borel subgroup if none of the conjugates of B in GL(2,Z/pnZ) is
formed solely by diagonal matrices. If B is a Borel subgroup, we denote by B1 the subgroup of B
formed by those matrices in B whose diagonal coordinates are 1 mod pn, and we denote by Bd the
subgroup of B formed by diagonal matrices, i.e.,

B1 = B ∩
{(

1 b
0 1

)
: b ∈ Z/pnZ

}
, and Bd = B ∩

{(
a 0
0 c

)
: a, c ∈ (Z/pnZ)×

}
.
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Lemma 4.2. Let p > 2 be a prime, n ≥ 1 and let B ≤ GL(2,Z/pnZ) be a Borel subgroup, such

that B contains a matrix g =

(
a b
0 c

)
with a 6≡ c mod p. Then, there is a Borel subgroup B′ ≤

GL(2,Z/pnZ) such that:

(1) B and B′ are conjugates, more precisely B′ = h−1Bh with h =

(
1 b/(c− a)
0 1

)
.

(2) B′ = B′dB
′
1, i.e., for every M ∈ B′ there is U ∈ B′d and V ∈ B′1 such that M = UV .

(3) [B,B] = B1 and [B′, B′] = B′1. In particular, [B,B] and [B′, B′] are cyclic groups whose
order is ps, for some 0 ≤ s ≤ n.

(4) B/[B,B] ∼= B′/[B′, B′] is isomorphic to a subgroup of (Z/pnZ)× × (Z/pnZ)×.
(5) If n = 1, then B ∼= B′ = B′dB

′
1 for any Borel subgroup B ≤ GL(2,Z/pZ).

Hence, if B ≤ GL(2,Zp) is a closed Borel subgroup, and there is a g =

(
a b
0 c

)
∈ B with a 6≡

c mod p, then there is a conjugate subgroup B′ ≤ GL(2,Zp), such that B′ = B′dB
′
1, with commutator

subgroup B′1 = [B′, B′] and the quotient B′/[B′, B′] is a subgroup of (Zp)× × (Zp)×.

Proof. Let g ∈ B and h ∈ GL(2,Z/pnZ) be matrices as in the statement of the lemma, and define

B′ = h−1Bh. Notice that h−1gh =

(
a 0
0 c

)
∈ B′. If B′ only contains diagonal matrices, then

B′ = B′1 and the statement is trivial. Otherwise, let v(B′) ≥ 0 be the smallest valuation among all

the top-right coordinates of matrices in B′, and let
(
e f
0 l

)
∈ B′ such that f 6≡ 0 mod pn and the

valuation of f is precisely v(B′). Then, the following commutator belongs to B′:

k =

(
a 0
0 c

)(
e f
0 l

)(
a 0
0 c

)−1(
e f
0 l

)−1

=

(
1 f

l

(
a
c − 1

)
0 1

)
.

Since e, l are units and a 6≡ c mod p, we conclude that f(a/c−1)/l also has valuation v(B′). Letm ∈ Z

be an integer such that to (f(a/c−1)/l) ·m ≡ pv(B′) mod pn. Then, km =

(
1 pv(B′)

0 1

)
∈ B′. Now,

if β ≡ 0 mod pv(B′), then there is some β′ such that β ≡ β′pv(B) mod pn. Thus, if M =

(
α β
0 γ

)
is an arbitrary non-diagonal element of B′, we have

M =

(
α β
0 γ

)
=

(
α β
0 γ

)
(km)−β

′/α(km)β
′/α

=

(
α β
0 γ

)(
1 −β′pν(B

′)

α
0 1

)
(km)β

′/α

=

(
α 0
0 γ

)
(km)β

′/α.

Thus, we have shown that with U = M(km)−β
′/α ∈ B′d, V = (km)β

′/α ∈ B′1 we have M = UV ∈
B′dB

′
1. This shows (1) and (2). Moreover, it is clear that any commutator in [B′, B′] has diagonal

coordinates congruent to 1 modulo pn and, therefore, [B′, B′] ≤ B′1. Notice that if M ∈ B′1, i.e.,
α ≡ γ ≡ 1 mod pn, and m ∈ Z as above, then U is the identity and M = V = (km)β

′ ∈ B′1. Since
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k is a commutator, this shows that B′1 ≤ [B′, B′]. Thus, [B′, B′] = B′1. Notice that B1 = hB′1h
−1.

Hence, [B,B] = h[B′, B′]h−1 = hB′1h
−1 = B1, as claimed in (3). Finally, B ∼= B′, so

B/[B,B] ∼= B′/[B′, B′] ∼= (B′dB
′
1)/B′1

∼= B′d ≤ (Z/pnZ)× × (Z/pnZ)×.

This shows (4). Now suppose that B is a closed Borel subgroup of GL(2,Zp). Since (c − a) ∈ Z×p ,
we may define h ∈ GL(2,Zp) as in (1) and put B′ = h−1Bh. Now let M ∈ B′. Put

M =

(
α β
0 γ

)
∈ B′, U =

(
α 0
0 γ

)
, and V =

(
1 β/α
0 1

)
.

Define g′ ∈ B′ by g′ = h−1gh, construct a commutator k ∈ B′ as before and, for a fixed n ≥ 1,

let m = m(n) ∈ Z such that km ≡
(

1 pv(B′)

0 1

)
mod pn. The previous arguments show that

U ≡ M(km(n))−β
′/α and V ≡ (km(n))β

′/α mod pn. Since B is closed, so is B′, and since M and k
belong to B′, we conclude that U and V belong to B′ as well. It follows that M = UV ∈ B′dB′1,
and B′ = B′dB

′
1. The proofs of B′1 = [B′, B′] and the structure of the quotient B′/[B′, B′] follow as

above. This shows (1)–(4).
For (5), suppose that n = 1. If B contains an element g as in the statement of the lemma, then

we are done by (1)-(5) above. If there is no such g, then each matrix in B has congruent (mod

p) diagonal entries. If B = Bd, then we are done. Otherwise, let g′ =

(
a b
0 a

)
be an arbitrary

element of B with b 6≡ 0 mod p. Then,

(g′)m =

(
a b
0 a

)m
=

(
am mam−1b
0 am

)
,

for each m ≥ 1. In particular, (g′)p−1 =

(
1 −ap−2b
0 1

)
and since ap−2b 6≡ 0 mod p, there is a q ≥ 1

such that −qap−2b ≡ 1 mod p. Thus, T = ((g′)(p−1))q =

(
1 1
0 1

)
∈ B and we conclude that

g′ =

(
a 0
0 a

)
·
(

1 b/a
0 1

)
= (g′ · T t) · T−t,

where t ≥ 1 is an integer such that t ≡ −b/a mod p. Since g′ ·T t ∈ Bd and T−t ∈ B1, and g′ ∈ B \Bd
was arbitrary, we conclude that B = BdB1.

Finally, if B ≤ GL(2,Zp) is a closed Borel subgroup, and there is a g =

(
a b
0 c

)
∈ B with

a 6≡ c mod p, we can set h as in (1), and B′ = h−1Bh. Then, Bn = B mod pn and B′n = B′ mod pn

satisfy properties (1)–(4) as subgroups of GL(2,Z/pnZ). Thus, B′ requires all the required properties
because B and therefore B′ are closed subgroups of GL(2,Zp). �

Remark 4.3. The result of the previous lemma is simply false for p = 2, i.e., the assumption p > 2
is not just technical. For instance, the Borel group

B =

{(
a b
0 c

)
: a, c ∈ (Z/4Z)×, b ≡ 2 mod 4

}
≤ GL(2,Z/4Z)

is abelian, so the commutator of B is trivial. The results of the lemma are also not necessarily true if
the diagonal entries of each element in the Borel subgroup B are congruent modulo pn (i.e., if there
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is no such element g as in the statement of the lemma). For instance, let B be the subgroup

B =

{(
1 + pn−1 pn−1

0 1 + pn−1

)t
=

(
(1 + pn−1)t t(1 + pn−1)t−1pn−1

0 (1 + pn−1)t

)
: t = 1, . . . , p

}
of GL(2,Z/pnZ). Suppose there is a subgroup B′ conjugate to B, such that B′ = B′dB

′
1. Since B has

order p, it follows that either B ∼= B′d or B ∼= B′1. However, the matrices in B are not diagonalizable,
and 1 is not a common eigenvalue so neither isomorphism can hold.

Lemma 4.4. Let p be a prime, n ≥ 1, V ∼= (Z/pnZ) × (Z/pnZ) and let B be a Borel subgroup of
GL(V ) ∼= GL(2,Z/pnZ) with respect to a Z/pnZ-basis {P,Q} of V . For a point R = λP + µQ ∈ V
of exact order pn, let BR be the subgroup of B that fixes each vector in 〈R〉. Then:

(1) If λ 6≡ 0 mod p, and νp(µ) = t for some 1 ≤ t ≤ n, then

BR =

{(
1− bpt/λ b

0 c

)
: b ∈ Z/pnZ, c ≡ 1 mod pn−t

}
∩B,

(2) If µ 6≡ 0 mod p, and νp(λ) = t for some 0 ≤ t ≤ n, then

BR =

{(
a (1− a)pt/µ
0 1

)
: a ∈ (Z/pnZ)×

}
∩B.

Proof. Notice that A ∈ GL(V ) fixes R if and only if A fixes δR, for all δ ∈ (Z/pnZ)×. Hence,
BR = BδR, for all δ ∈ (Z/pnZ)×.

If R = (λ, µ) with λ 6≡ 0 mod p and νp(µ) = t, then µ = µ′pt, with µ′ a unit. Thus, if we put
R′ = 1/µ′R = (λ/µ′, pt), then BR = BR′ . Hence, without loss of generality, we may assume λ is a
unit and µ = pt. Similarly, if νp(λ) = t, we may assume µ is a unit and λ = pt. Now the lemma

follows easily from the fact that a matrix
(
a b
0 c

)
∈ B belongs to BR if and only if

λ(a− 1) + bµ ≡ (c− 1)µ ≡ 0 mod pn.

This concludes the proof ot the lemma. �

Lemma 4.5. Let n ≥ 1, let p > 2 be a prime, and let J ≤ (Z/pnZ)× be a subgroup. Let 1 ≤ b ≤ n
be a positive integer, and let J1,b be the subgroup of J formed by those a ∈ J such that a ≡ 1 mod pb.
Then:

|J1,b| =

{
max{1, pn−b} , if n− νp(|J |) ≤ b ≤ n,
pνp(|J |) , if 1 ≤ b < n− νp(|J |).

Moreover, if we define J−1,b similarly, and |J | is even, then |J−1,b| = |J1,b|.
Proof. Since p > 2, there exists a generator g of (Z/pnZ)×, and J is cyclic, generated by some power
of g, say gk, where k = dpj for some 0 ≤ j ≤ n − 1, and some positive divisor d of (p − 1). In this
case,

J =

{
(gk)n : n = 1, . . . ,

(p− 1)

d
pn−j−1

}
,

so |J | = (p−1)pn−j−1/d and j = n− νp(|J |)−1. The subgroup J1,b is formed by those powers (gk)n

such that ϕ(pb) divides kn. If b− 1 ≥ j, then

J1,b =

{
(gk)n : n =

(p− 1)

d
pb−1−j , 2

(p− 1)

d
pb−1−j , . . . , pn−b

(p− 1)

d
pb−1−j

}
.
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Hence, |J1,b| = pn−b. Otherwise, if b− 1 < j, i.e., when 1 ≤ b < n− νp(|J |), then

J1,b =

{
(gk)n : n =

(p− 1)

d
, 2

(p− 1)

d
, . . . , pn−j−1 (p− 1)

d

}
,

so that |J1,b| = pn−j−1 = pνp(|J |).
Finally, if |J | is even, then there exists m ∈ J such that m ≡ −1 mod pn, and there is a bijection

J−1,b → J1,b given by a 7→ m · a. �

Remark 4.6. Let p > 2 be a prime, let J ⊆ (Z/pnZ)× be a subgroup, and let ψ : J → {±1} be a
quadratic character (note that we assume here that the word quadratic implies non-trivial). Then,
Ker(ψ) = J2 and ψ(a) = −1 if and only if a ∈ J is a quadratic non-residue mod pn, if and only if
a is a quadratic non-residue mod p. In particular, if aψ(a) ≡ 1 mod p, then a ≡ ψ(a) mod p and so
either a ≡ ψ(a) ≡ 1 mod p or a ≡ ψ(a) ≡ −1 mod p, and therefore −1 is a quadratic non-residue
and p ≡ 3 mod 4. Thus, if p ≡ 1 mod 4 and aψ(a) ≡ 1 mod p, then we must necessarily have
a ≡ ψ(a) ≡ 1 mod p.

Lemma 4.7. Let p > 2 be a prime, n ≥ 1, m ≥ 0, let V ∼= (Z/pnZ)× (Z/pnZ) and let B be a Borel
subgroup B ≤ GL(V ) ∼= GL(2,Z/pnZ). Let J ≤ (Z/pnZ)× be a subgroup, and suppose I ≤ B is a
subgroup of the form

I =

{(
aψ(a) b

0 ψ−1(a)

)
: a ∈ J, b ≡ 0 mod pm

}
,

where ψ : J → {±1} is a trivial or quadratic character. Let δ = δ(ψ) = 1 if ψ is trivial or p ≡
1 mod 4, and δ = 2 otherwise (i.e., ψ is quadratic and p ≡ 3 mod 4). Let f = f(ψ) = 1 or 2 if ψ
is trivial or quadratic, respectively. For R ∈ V , we write IR for the subgroup of I that fixes every
element of 〈R〉.

(1) Suppose R = λP + µQ, with λ 6≡ 0 mod p and νp(µ) = t, for some 1 ≤ t ≤ n.
(a) If ψ is trivial, or 1 ≤ t ≤ n− 1, or p ≡ 1 mod 4, then

|I|/|IR| =

{
|J | , if n− νp(|J |) ≤ t+m ≤ n,
|J |pn−m−νp(|J |)−t , if 1 ≤ t+m < n− νp(|J |).

(Note: in the second case, n−m− νp(|J |)− t > 0.)
(b) Otherwise, if ψ is non-trivial, t = n and p ≡ 3 mod 4, then |I|/|IR| = |J |/2.
Thus, in all cases, |I|/|IR| is divisible by |J |/δ(ψ).

(2) Suppose that R = λP + µQ, with µ 6≡ 0 mod p, and νp(λ) = t:
(a) If t = n ≤ m or 0 ≤ m ≤ t ≤ n, then |I|/|IR| = f · max{1, pn−m}. In particular, if

n ≤ m and R ∈ 〈Q〉, then |I|/|IR| = f .
(b) If 0 ≤ t < min{m,n}, then

|I|/|IR| =

{ |J |
pt , if n− νp(|J |) ≤ min{m,n} − t ≤ n,

|J |·pn

pmin{m,n}+νp(|J|) , if 1 ≤ min{m,n} − t < n− νp(|J |).

In particular, |I|/|IR| is divisible by (|J |/pνp(|J |))pn−m if m < n, and it is divisible by
|J |/pνp(|J |) if n ≤ m.

Proof. Let R = λP + µQ be a vector of exact order pn. Then, one of λ and µ is 6≡ 0 mod p. We
distinguish two cases:
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(1) Suppose first that λ 6≡ 0 mod p and µ ≡ 0 mod pt, for some 1 ≤ t ≤ n. By Lemma 4.4, the
subgroup of B that fixes R is

IR = I ∩BR = I ∩
{(

1− bpt/λ b
0 c

)
: b ∈ Z/pnZ, c ≡ 1 mod pn−t

}
.

If a matrix
(

1− bpt/λ b
0 c

)
is in IR, then b ≡ 0 mod pm, and then a = (1− bpt/λ) ∈ J is

congruent to 1 mod pt+m. Let J1,b be those elements of J that are congruent to 1 mod pb,
so that a ∈ J1,t+m. If ψ is trivial, or 1 ≤ t ≤ n − 1, or p ≡ 1 mod 4 (see Remark 4.6), then
I ∩BR is given by:

IR =

{(
1− bpt/λ b

0 1

)
: b ≡ 0 mod pm, 1− bpt/λ ∈ J1,t+m

}
=

{(
1− δpt+m (δ + τ)pmλ

0 1

)
: τ ∈ (pn−tZ/pnZ), 1− δpt+m ∈ J1,t+m

}
.

Thus, Lemma 4.5 implies that

|IR| = |J1,t+m| · pt =

{
pn−(t+m)pt = pn−m , if n− νp(|J |) ≤ t+m ≤ n,
pνp(|J |)pt = pνp(|J |)+t , if 1 ≤ t+m < n− νp(|J |).

If we put N = N(m,n) = max{1, pn−m}, then

|I|/|IR| =
|J | ·N
|IR|

=

{
|J | ·N/N = |J | , if n− νp(|J |) ≤ t+m ≤ n,
|J | ·N/pνp(|J |)+t = |J |pn−m−νp(|J |)−t , if 1 ≤ t+m < n− νp(|J |).

Notice that in the second case the quantity n − m − νp(|J |) − t is greater than 0, and
n−m > t+ νp(|J |) ≥ 1, so N = pn−m. Thus, in both cases, |I|/|IR| is divisible by |J |

Otherwise, if ψ is non-trivial, t = n and p ≡ 3 mod 4 (again, Remark 4.6 plays a role
here), then it is given by:

I ∩BR =

{(
1 b
0 ±1

)
: b ∈ pmZ/pnZ

}
.

Hence, |IR| = |I ∩BR| = 2N . It follows that |I|/|IR| = |J | ·N/2N = |J |/2. This shows part
(1).

(2) Now, suppose that µ 6≡ 0 mod p and λ ≡ 0 mod pt, for some 0 ≤ t ≤ n. By Lemma 4.4, the
subgroup of I that fixes R is

IR = I ∩
{(

a −(a− 1)pt/µ
0 1

)
: a ∈ (Z/pnZ)×

}
.

Thus, IR is given by

IR =

{(
a −(a− 1)pt/µ
0 1

)
: a ∈ J, ψ(a) = 1, (a− 1)pt ≡ 0 mod pmin{n,m}

}
.

Notice that if ψ is trivial, then Ker(ψ) = {a ∈ J : ψ(a) = 1} has size |J |. Otherwise, if ψ is
quadratic, then Ker(ψ) has size |J |/2. Next, we distinguish two cases according to whether
m ≤ t.
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• If 0 ≤ m ≤ t ≤ n or t = n ≤ m, then |IR| = |Ker(ψ)| and |I|/|IR| = N = max{1, pn−m}
or 2N depending on whether ψ is trivial or quadratic, respectively. In particular, if
n ≤ m and R = µQ with ψ trivial, then |I|/|IR| = 1.
• If 0 ≤ t < min{m,n}, then

IR =

{(
a −(a− 1)pt/µ
0 1

)
: a ∈ J, ψ(a) = 1, a ≡ 1 mod pmin{m,n}−t

}
.

Since min{m,n} > t, any a ≡ 1 mod pmin{m,n}−t satisfies a ≡ 1 mod p and ψ(a) = 1 is
automatic. Thus, we have |IR| = |J1,min{m,n}−t|. It follows from Lemma 4.5 that

|I|/|IR| =


|J |·pn−min{m,n}

pn−(min{m,n}−t) = |J |
pt , if n− νp(|J |) ≤ min{m,n} − t ≤ n,

|J |·pn−min{m,n}

pνp(|J|)
= |J |·pn

pmin{m,n}+νp(|J|) , if 1 ≤ min{m,n} − t < n− νp(|J |).

If n − νp(|J |) ≤ m − t and m ≤ n, then t ≤ νp(|J |) + m − n and |I|/|IR| = |J |/pt is
divisible by (|J |/pνp(|J |))pn−m. If m ≥ n, then n − νp(|J |) ≤ n − t implies t ≤ νp(|J |)
and |I|/|IR| is divisible by |J |/νp(|J |).

This shows part (2), and concludes the proof of the lemma.
�

Remark 4.8. Let L be a number field with ring of integers OL, and let ℘ be a prime ideal of OL
lying above a rational prime p. Let E/L be an elliptic curve, and let R ∈ E(L)[pn] be a point of exact
order pn. Let ι : L ↪→ L℘ be a fixed embedding. Let F = L(R) and let ΩR be the prime of F above ℘
associated to the embedding ι. Let K be a finite Galois extension of Lnr

℘ , such that the ramification
index of K over Qp is e. Let Ẽ/K be a curve isomorphic to E over K, and let T ∈ Ẽ(K)[pn] be the
point that corresponds to ι(R) on E(L℘). Suppose that the degree of the extension K(T )/K is g.
Since K/Lnr

℘ is of degree e/e(℘|p), it follows that the degree of K(T )/Lnr
℘ is eg/e(℘|p).

Let F = ι(F ) ⊆ L℘. Since E and Ẽ are isomorphic over K, it follows that K(T ) = KF and,
therefore, the degree of the extension KF/Lnr

℘ is eg/e(℘|p). Since K/Lnr
℘ is Galois by assumption,

it follows that g = [K(T ) : K] = [FLnr
℘ : K ∩ FLnr

℘ ], so the degree of [FLnr
℘ : Lnr

℘ ] equals g · k
where k = [K ∩ FLnr

℘ : Lnr
℘ ]. Hence, the degree of F/L℘ is divisible by gk and, in particular, the

ramification index of the prime ideal ΩR over ℘ in the extension L(R)/L is divisible by gk, where
g = [K(T ) : K].

Moreover, let Ω be the prime of L(E[pn]), lying above ℘, associated to the embedding ι, and let
G = Gal(L(E[pn])/L). Let IΩ ⊂ DΩ ⊂ G be the inertia and decomposition groups associated to
Ω. It follows that IΩ

∼= Gal(Lnr
℘ (ι(E[pn]))/Lnr

℘ ). Let K and Ẽ be as before. Then, by the same
argument as above, we have that IΩ has a subgroup IK,Ω isomorphic to Gal(K(Ẽ[pn])/K) such that
σ ∈ IK,Ω acts on R ∈ E[pn] just like σ ∈ Gal(K(Ẽ[pn])/K) acts on ι(R) ∈ Ẽ[pn].

Now let Ω′ be another prime of L(E[pn]) lying above ℘, and let ι′ be the corresponding embedding
of L into L℘. Then ι and ι′ differ by an automorphism ρ of L℘, i.e., ρ ◦ ι′ = ι, which sends
ι(Ω′) to ι(Ω), i.e., ρ(ι(Ω′)) = ι(Ω). By abuse of notation we will also call ρ the restriction of ρ to
ι′(L(E[pn])) ∼= L(E[pn]), so that ρ may be regarded as an element of Gal(L(E[pn])/L). As such,
ρ(Ω′) = Ω. Moreover,

DΩ = ρDΩ′ρ
−1, and IΩ = ρIΩ′ρ

−1.
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Let R′ ∈ E[pn] and let IR′ be the elements of IΩ′ that fix R′. If ρ(R′) = R, then

IR = ρIR′ρ
−1.

Let ΩR be the prime of L(R) lying above ℘ and below Ω, and let ΩR′ be the prime of L(R′) lying
above ℘ and below Ω′. It follows from our comments above that

e(ΩR|℘) =
|IΩ|
|IR|

=
|IΩ′ |
|IR′ |

= e(ΩR′ |℘),

where ρ(ΩR′) = ΩR.

Theorem 4.9. Let L be a number field with ring of integers OL, and let ℘ be a prime ideal of OL,
lying above a rational prime p. Let n ≥ 1 be fixed, let E/L be an elliptic curve, let Ω be a prime of
L(E[pn]) lying above ℘ and let IΩ be the associated inertia subgroup in Gal(L(E[pn])/L). Suppose
that there is a Z/pnZ-basis {P,Q} of E[pn] such that the inertia subgroup IΩ contains a subgroup I
of the form

I =

{(
χnψ ∗

0 ψ−1

)
: ∗ ≡ 0 mod pm

}
⊆ IΩ,

for some m ≥ 0, where χn : I → (Z/pnZ)× is the pn-th cyclotomic character, and ψ : I → {±1} is a
trivial or quadratic character. Let δ = δ(ψ) and f = f(ψ) be as in the statement of Lemma 4.7, and
write |χn| for the size of the image of χn. If R ∈ E[pn], we write ΩR for the prime of L(R) below Ω
and above ℘.

(i) There exists a point R ∈ E[pn] of exact order pn with e(ΩR|℘) divisible by f(ψ) max{1, pn−m}
(and equality if I = IΩ). If m ≥ n, I = IΩ, L(R)/L is Galois and ψ is unramified (over ℘),
then the extension is unramified at ℘. Otherwise, there is another prime Ω′ of L(E[pn]) over
℘ such that e(Ω′R|℘) is either |χn|/δ(ψ) or divisible by |χn|/pνp(|χn|).

(ii) If 0 ≤ m < n, then the ramification index of any prime ideal ΩR over ℘ in the extension
L(R)/L is divisible by |χn|/δ(ψ) or f(ψ) ·pn−m, or (|χn|/pνp(|χn|))pn−m, for any point R ∈ E
of exact order pn.

(iii) If R is a point of exact order pn, the subgroup 〈[pn−a]R〉 ⊂ E[pa] is not Gal(L/L)-stable
for some a ≥ 1, then there is a prime Ω′′R of L(R) over ℘ such that e(Ω′′R|℘) is divisible by
|χn|/δ(ψ), or f(ψ)pn−a+1, or |χn|/pmin{a−1,νp(|χn|)}.

(iv) If R is a point of exact order pn, and the subgroup 〈[pn−a]Q〉 ⊂ E[pa] is not Gal(L/L)-stable
for some a ≥ 1, then the same conclusion as in part (iii) holds for L(R).

(v) If 〈[pn−a]Q〉 ⊂ E[pa] is Gal(L/L)-stable for some 1 ≤ a ≤ n, then m ≥ a. Equivalently, if
m ≤ a− 1 for some 1 ≤ a ≤ n, then 〈[pn−a]Q〉 is not Gal(L/L)-stable.

Proof. Let E/L, R ∈ E[pn], ℘, and Ω be as in the statement of the theorem, let L℘ be the completion
of L at ℘, let IΩ = I(Ω|℘) be the inertia subgroup of associated to Ω, and suppose that I ⊆ IΩ ⊆
GL(2,Z/pnZ) is of the form given in the statement of the theorem, with respect to a basis {P,Q}
of E[pn]. By putting V = E[pn], I = I, and letting J be the image of χn, we may use the results of
Lemma 4.7. Moreover, notice that if R ∈ E[pn] and IΩ,R is the subgroup of IΩ that fixes R, then

e(ΩR|℘) = |IΩ|/|IΩ,R|,

where ΩR is the prime of L(R) below Ω. In particular, if we write IR = I ∩ IΩ,R, then |I|/|IR| is a
divisor of e(ΩR|℘), with equality if I = IΩ.
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First, by Lemma 4.7 part (2a), if R ∈ 〈Q〉, then the ramification index e(ΩR|℘) of L(R)/L is
divisible by f(ψ) max{1, pn−m}. If L(R)/L is Galois, m ≥ n, I = IΩ, and ψ is unramified over ℘,
then all the primes above ℘ in L(R)/L would be unramified. On the other hand, suppose thatm ≥ n,
I = IΩ, and the prime ΩR of L(R)/L is unramified (or ramification index of 2 for some R ∈ 〈Q〉
of exact order pn, if ψ is ramified) but the extension is not Galois. This implies that R ∈ 〈Q〉, and
there is a σ ∈ Gal(L(E[pn])/L) such that L(σ(R)) 6⊂ L(R). Thus, σ(R) 6∈ 〈R〉 = 〈Q〉. When m ≥ n,
our Lemma 4.7 implies that e(Ωσ(R)|℘) is either |χn|/δ(ψ), or divisible by |χn|/pνp(|χn|), in all cases.
Hence, the ramification index of Ω′R = σ−1(Ωσ(R)) in L(R)/L is either |χn|/δ(ψ), or divisible by
|χn|/pνp(|χn|), by Remark 4.8. This completes the proof of (i).

Part (ii) follows directly from Lemma 4.7.
For (iii), suppose that 〈[pn−a]R〉 is not Galois-stable, for some 1 ≤ a ≤ n. Let Pa = [pn−a]P and

Qa = [pn−a]Q, so that {Pa, Qa} is a basis of E[pa]. Since 〈[pn−a]R〉 is not Galois-stable, it follows that
there is τ ∈ Gal(L(E[pa])/L) such that τ([pn−a]R) 6∈ 〈[pn−a]Q〉 = 〈Qa〉, i.e., [pn−a](τ(R)) 6∈ 〈Qa〉.
Hence, if τ(R) = λP +µQ, we must have λ 6≡ 0 mod pa, i.e., 0 ≤ νp(λ) < a. By Lemma 4.7, if Ωτ(R)

is the prime of L(τ(R)) below Ω, then the ramification index e(Ωτ(R)|℘) is divisible by
• (Case (1)): |χn|/δ(ψ), if νp(λ) = 0 and 1 ≤ νp(µ) ≤ n.
• (Case (2a)): f(ψ)pn−m ≥ f(ψ)pn−a+1, if νp(µ) = 0 and 0 ≤ m ≤ νp(λ) < a ≤ n (notice that
in the case (2.a) we cannot have νp(λ) = n ≤ m because νp(λ) < a ≤ n).
• (Case (2b.i)): |χn|/pνp(λ), if νp(µ) = 0, and 0 ≤ νp(λ) < min{m,n}, and n − νp(|χn|) ≤

min{m,n}−νp(λ) ≤ n. In this case, νp(|χn|)−νp(λ) ≥ n−min{m,n} ≥ 0, so |χn|/pνp(λ) ∈ Z.
Since νp(λ) < a, then e(Ωτ(R)|℘) is divisible by |χn|/pmin{a−1,νp(|χn|)}.
• (Case (2b.ii)): (|χn|/pνp(|χn|))pn−min{m,n}, if νp(µ) = 0, and 0 ≤ νp(λ) < min{m,n}, and
n− νp(|χn|) > min{m,n} − νp(λ) ≥ 1. Notice that in this case, n−min{m,n} > νp(|χn|)−
νp(λ), and also n−min{m,n} ≥ 0. Thus,

n−min{m,n} ≥ max{0, νp(|χn|)− νp(λ)}
≥ max{0, νp(|χn|)− (a− 1)}
= νp(|χn|)−min{a− 1, νp(|χn|)}.

Thus, (|χn|/pνp(|χn|))pn−min{m,n} is divisible by |χn|/pmin{a−1,νp(|χn|)}.

Hence, the ramification index of Ω′′R = τ−1(Ωτ(R)) in L(R)/L is divisible by |χn|/δ(ψ), or f(ψ)pn−a+1,
or |χn|/pmin{a−1,νp(|χn|)}. This shows (iii).

Finally, for (iv), suppose that 〈[pn−a]Q〉 is not Galois-stable, for some 1 ≤ a ≤ n. Let Pa =
[pn−a]P and Qa = [pn−a]Q, so that {Pa, Qa} is a basis of E[pa]. Since 〈[pn−a]Q〉 is not Galois-
stable, it follows that there is τ ∈ Gal(L(E[pa])/L) such that τ([pn−a]R) 6∈ 〈[pn−a]Q〉 = 〈Qa〉, i.e.,
[pn−a](τ(R)) 6∈ 〈Qa〉. The rest of the argument can now proceed as in (iii).

Part (v) is clear, as 〈[pn−s]Q〉 is not stable under I ⊆ IΩ as long as s > m. This concludes the
proof of the theorem. �

Remark 4.10. Let Ξn : Gal(L(E[pn])/L) → (Z/pnZ)× be the pn-th cyclotomic character, so that
χn is the restriction of Ξn to the inertia subgroup IΩ for a fixed prime Ω of L(E[pn]) above ℘. Since
L(E[pn])/L is Galois and Ξn is a character, the image of χn is independent of the chosen prime Ω
above ℘. Let |Ξn| be the size of the image of Ξn. The character Ξn factors through

Gal(L(E[pn])/L)/Gal(L(E[pn])/L(µpn)) ∼= Gal(L(µpn)/L)→ (Z/pnZ)×.
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Let χ : Gal(L(µpn)/L)→ (Z/pnZ)×, let P be the prime of L(ζpn) below Ω, and let IP be the inertia
subgroup in Gal(L(µpn)/L). Then IP ∼= χ(IP) ∼= χn(IΩ), and |IP| = |χn(IΩ)| = |χn| is divisible by
the quantity ϕ(pn)/ gcd(ϕ(pn), e(℘|p)), by Lemma 7.5.

In what follows, the subgroup I ⊆ IΩ is isomorphic to the Galois group Gal(K(E′[pn])/K), where
K is a finite extension of Lnr

℘ , and E′/K is an elliptic curve isomorphic to E/K, but given by a
model with good reduction. In particular, χn restricted to I is the pn-th cyclotomic character

χK : Gal(K/K)→ Gal(K(E′[pn])/K)→ (Z/pnZ)×.

A similar argument to the one above (but this time working locally) shows that |χK | is divisible by
ϕ(pn)/ gcd(ϕ(pn), e), where e is the ramification index in the extension K/Qp. Finally, notice that
e = e(K/Lnr

℘ ) · e(℘|p).

Corollary 4.11. Let L, ℘ a prime of L above p ≥ 2, E/L, and I ⊆ IΩ and m ≥ 0 as in the statement
of Theorem 4.9. Suppose that I corresponds to a Galois group Gal(K(E′[pn])/K), where K/Lnr

℘ is a
finite Galois extension, and E′ is a curve isomorphic to E over K. Let e be the ramification index
in the extension K/Qp. Let χn : Gal(K/K) → (Z/pnZ)× be the pn-th cyclotomic character. Let
R ∈ E[pn] be a point of exact order pn.

(1) Suppose that either E/L does not admit a L-rational isogeny of degree pa, or m ≤ a −
1. If n ≥ a, then there is a prime ΩR of L(R) over ℘ such that e(ΩR|℘) is divisible by
|χn|/δ(ψ), or f(ψ)pn−a+1, or |χn|/pmin{a−1,νp(|χn|)}. In particular, e(ΩR|℘) is divisible by
ϕ(pn)/ gcd(ϕ(pn), δ(ψ)epa−1) or f(ψ)pn−a+1.

(2) Suppose that m ≥ 1, and if E/L admits a L-rational isogeny φ of degree p, such that ker(φ) =
〈S〉 ⊂ E[p], then the ramification index of K(S)/K is > f(ψ), or the ramification index of
℘ in the Galois extension L(S)/L satisfies

e(℘,L(S)/L)/ gcd(e(℘,L(S)/L), e(K/Lnr
℘ )) > f(ψ).

Then, there is a prime ΩR of L(R) over ℘ such that e(ΩR|℘) is divisible by |χn|/δ(ψ), or
f(ψ)pn, or |χn|. In particular, e(ΩR|℘) is divisible by ϕ(pn)/ gcd(ϕ(pn), δ(ψ)e) or f(ψ)pn.

(3) The size of I ⊆ IΩ ⊆ Gal(L(E[pn])/L) is exactly |χn|, for n ≤ m, and |χn|pn−m, for
all n > m. In particular, e(Ω|℘) is divisible by ϕ(pn)/ gcd(ϕ(pn), e) for n ≤ m, and by
ϕ(pn)pn−m/ gcd(ϕ(pn), e) if n > m.

(4) Let n ≥ 2, let {P,Q} be the basis defined in Theorem 4.9, let P1 = [pn−1]P , and let Hn =
〈R,E[pn−1]〉 ⊂ E[pn], where [pn−1]R = P1. Then, the ramification index in the extension
K(Hn)/K is |χn| if n ≤ m, and |χn|pn−m−1 if n > m. In particular, the ramification
index of a prime above ℘ in L(Hn)/L is divisible by ϕ(pn)/ gcd(ϕ(pn), e) for n ≤ m, and by
ϕ(pn)pn−m−1/ gcd(ϕ(pn), e) if n > m.

(5) Let n ≥ 2 and p > 2, assume that νp(|χn|) ≥ 1, let {P,Q} be as in (3), let Q1 = [pn−1]Q,
and let Hn = 〈R,E[pn−1]〉 ⊂ E[pn], where [pn−1]R = Q1. Then, the ramification index in
the extension K(Hn)/K is |χn|/p if n ≤ m and |χn|pn−m−1 if n > m. In particular, the
ramification index of a prime above ℘ in L(Hn)/L is divisible by ϕ(pn−1)/ gcd(ϕ(pn), e) for
n ≤ m, and by ϕ(pn)pn−m−1/ gcd(ϕ(pn), e) if n > m.

Proof. We show (1) first. If E/L does not admit a L-rational isogeny of degree pa, then 〈S〉 ⊂ E[pa]
is not Gal(L/L)-stable for any S ∈ E[pa]. In particular, 〈[pn−a]R〉 is not Gal(L/L)-stable. Now we
can apply Theorem 4.9, part (iii). If m ≤ a − 1, then 〈[pn−a]Q〉 is not Gal(L/L)-stable (by Thm.
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4.9, part (v)). Now we can apply Theorem 4.9, part (iv). The last piece of (1) follows from Remark
4.10, because |χn| is divisible by ϕ(pn)/ gcd(ϕ(pn), e).

For (2), suppose that m ≥ 1, and if E/L admits a L-rational isogeny φ of degree p, such that
ker(φ) = 〈S〉 ⊂ E[p], then the ramification index of K(S)/K is > f(ψ), or the ramification index of
℘ in the Galois extension L(S)/L satisfies g = e(℘,L(S)/L)/ gcd(e(℘,L(S)/L), e(K/Lnr

℘ )) > f(ψ).
Then, we claim that 〈Q1〉 ⊂ E[p], with Q1 = [pn−1]Q, cannot be Gal(L/L)-stable, and Theorem
4.9, part (iv) can be used with a = 1 to conclude (2). Suppose for a contradiction that 〈Q1〉 ⊂ E[p]
is Gal(L/L)-stable. Then, there is an isogeny φ of degree p with kernel 〈Q1〉. By the structure of
I = Gal(K(E′[pn])/K), and Lemma 4.7, the ramification index in K(Q1)/K is f(ψ). However, the
ramification in K(Q1)/K is divisible by

e(Lnr
℘ (Q1)/Lnr

℘ )

gcd(e(Lnr
℘ (Q1)/Lnr

℘ ), e(K/Lnr
℘ ))

=
e(℘,L(Q1)/L)

gcd(e(℘,L(Q1)/L), e(K/Lnr
℘ ))

> f(ψ),

a contradiction. This proves (2).

It is clear from our assumptions on the shape of I that I =

{(
χnψ 0

0 ψ−1

)}
for n ≤ m, and

I =

{(
χnψ b

0 ψ−1

)
: b ≡ 0 mod pm

}
for n ≥ m. Thus, |I| = |χn| · max{1, pn−m} for all n ≥ 1,

which shows (3).
For part (4), let {P ′, Q′} the Z/pnZ-basis of E′[pn] that corresponds to {P,Q} via the isomorphism

of E and E′, and let R′ ∈ E′ the point that correspond to R ∈ E. Let H ′n = 〈R′, E′[pn−1]〉, where
[pn−1]R′ = P ′1. Thus, H ′n = 〈P ′, E′[pn−1]〉. Let us identify I = Gal(K(E′[pn])/K). Then, the group
Gn = Gal(K(E′[pn])/K(H ′n)) is given by

Gn =

{
A =

(
a b
0 c

)
: A ∈ I, a ≡ 1 mod pn, b ≡ 0 mod pn−1, c ≡ 1 mod pn−1

}
≤ GL(2,Z/pnZ).

Then, the ramification index ofK(E′[pn])/K(H ′n) is given by the size of I∩Gn. Moreover |I∩Gn| = 1
if 2 ≤ n ≤ m, and |I∩Gn| = p if n > m ≥ 2. Hence, using part (2) we conclude that the ramification
in K(H ′n)/K is |χn| if 2 ≤ n ≤ m, and |χn|pn−m−1 if n > m (and n ≥ 2). Since E and E′ are
isomorphic over K, the ramification in K(H ′n)/K and K(Hn)/K is the same, and this shows (4).

Let p > 2 and n ≥ 2, and let P ′, Q′, and R′ be as above. If H ′n = 〈R′, E′[pn−1]〉, where
[pn−1]R′ = Q′1, then H ′n = 〈Q′, E′[pn−1]〉. Then, the group Gn = Gal(K(E′[pn])/K(H ′n)) is given by

Gn =

{
A =

(
a 0
0 1

)
: A ∈ I, a ≡ 1 mod pn−1

}
≤ GL(2,Z/pnZ).

Moreover |I ∩ Gn| is the number of elements in the image of χn that are ≡ 1 mod pn−1. Thus,
|I ∩Gn| = 1 if νp(|χn|) = 0 and |I ∩Gn| = p if νp(|χn|) ≥ 1. Since we are assuming the latter, using
part (2) we conclude that the ramification in K(H ′n)/K is |χn|/p if 2 ≤ n ≤ m, and |χn|pn−m−1 if
n > m (and n ≥ 2), as claimed in (5). �

Lemma 4.12. Let F be a field of characteristic 0, and let E/F and E′/F be isomorphic elliptic
curves (over a fixed algebraic closure F ) with j(E) = j(E′) 6= 0 or 1728. Let φ : E → E′ be an
isomorphism. Then:

(1) E and E′ are isomorphic over F or E′ is a quadratic twist of E.
(2) For all R ∈ E(F ), we have F (x(R)) = F (x(φ(R))).



UNIFORM BOUNDEDNESS 19

(3) Moreover, if F (R)/F is Galois, cyclic, and [F (x(R)) : F ] is even, then the quotient [F (φ(R)) :
F ]/[F (R) : F ] = 1 or 2.

Proof. Let E and E′, respectively, be given by Weierstrass equations y2 = x3 + Ax + B and y2 =
x3 + A′x+B′, with coefficients in F . Since j(E) = j(E′) 6= 0, 1728, none of the coefficients is zero.
By [43, Ch. III, Prop. 3.1(b)], the isomorphism φ : E → E′ is given by (x, y) 7→ (u2x, u3y) for some
u ∈ F \ {0}. Hence A′ = u4A and B′ = u6B, and so u2 ∈ F . Thus, either E ∼=F E′, or E′ is the
quadratic twist of E by u. This shows (1).

Let R ∈ E(F ). If E ∼=Q E′ then F (R) = F (φ(R)) and the same holds for the subfields of the
x-coordinates, so (2) and (3) are immediate. Let us assume for the rest of the proof that E′ is the
quadratic twist of E by

√
d, for some d ∈ F \ F 2. It follows that φ((x, y)) = (dx, d

√
d · y) and,

therefore, F (x(φ(R))) = F (d · x(R)) = F (x(R)). This proves (2).
Let x = x(R) and y = y(R). Then F (R) = F (x, y) and F (φ(R)) = F (x,

√
d · y). The degree of

F (x, y)/F (x) is 1 or 2 because y is given by the Weierstrass equation y2 = x3 +Ax+B.

• If F (x) = F (x, y) = F (R), then y ∈ F (x) and F (x,
√
d · y) = F (x,

√
d). Thus, we have

[F (φ(R)) : F ] = [F (x,
√
d) : F (x)] · [F (x) : F ] and hence [F (φ(R)) : F ]/[F (R) : F ] = 1 or 2.

• Suppose F (x, y)/F (x) is quadratic. If F (x,
√
d · y)/F (x) is also quadratic, then we have

[F (φ(R)) : F ]/[F (R) : F ] = 1. Otherwise, assume that F (x,
√
d · y) = F (x) and we will

reach a contradiction. Indeed, in this case
√
d · y ∈ F (x). Hence, there is z ∈ F (x) such

that y =
√
d · z and we may conclude that F (x, y) = F (x,

√
d). It follows that

√
d ∈ F (R).

Let K = F (
√
d) ⊆ F (R). Since F (R)/F is Galois and cyclic, K is the unique quadratic

extension of F contained in F (R). Moreover, F (x)/F is of even degree by assumption, and
Galois, cyclic because F (x) ⊆ F (R). Thus, K = F (

√
d) ⊆ F (x). It would follow that

F (x, y) = F (x,
√
d) = F (x) which is a contradiction, since we have assumed that F (R)/F (x)

is quadratic.
This proves (3) and concludes the proof of the lemma. �

5. Potential multiplicative reduction

Let L be a number field, and let E/L be an elliptic curve. We say that E/L has potential
multiplicative reduction at a prime ideal ℘ of OL if there is an extension of number fields F/L and
a prime P of OF lying above ℘ such that E/F has multiplicative reduction at P. The curve E/F
has bad multiplicative reduction at P if and only if νP(c4) = 0 and νP(∆) > 0 (for a minimal model
at P), if and only if νP(j) < 0 (because j = c3

4/∆; see [43, Proposition 5.1, Ch. VII.5]). If E is
defined over L ⊆ F , then νP(j) < 0 if and only if ν℘(j) < 0. Thus, E/L has potential multiplicative
reduction at ℘ if and only if ν℘(j) < 0.

Elliptic curves with non-integral j-invariant can be treated using the theory of Tate curves (see
[44], Chapter V). Let L℘ be the completion of L at ℘, and let q ∈ L∗℘ such that ν℘(q) > 0. Let Eq
be the elliptic curve given by

y2 + xy = x3 + a4x+ a6,

with

a4 = −5
∑
n≥1

n3qn

1− qn
, and a6 = − 1

12

∑
n≥1

(7n5 + 5n3)qn

1− qn
.
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Then, Eq(L℘) ∼= L
∗
℘/q

Z as Gal(L℘/L℘)-modules ([44, Ch. V, Thm. 3.1]). Moreover, for each j0 ∈ L∗℘
with ν℘(j) < 0 there is a q ∈ L∗℘ such that ν℘(q) > 0 and j(Eq) = j0 ([44, Ch. V, Lemma 5.1]).

Theorem 5.1. Let L be a number field, let ℘ be a prime ideal of OL, and let E/L be an elliptic
curve with potential multiplicative reduction at ℘ (i.e., ν℘(j) < 0). Fix an embedding ι : L ↪→ L℘, so
that E may be regarded as defined over L℘ via ι. Then:

(a) There is a q ∈ L∗℘ such that ν℘(q) > 0, and E/L℘ is a twist of Eq/L℘ by a trivial or quadratic
character ψ℘ : Gal(L℘/L℘)→ {±1}.

(b) Let n ≥ 1 be fixed, let Ω be a prime of L(E[pn]) lying above ℘, associated to the embedding ι,
and let IΩ be the associated inertia subgroup in Gal(L(E[pn])/L). Then, there is a Z/pnZ-
basis {P,Q} of E[pn] such that the inertia subgroup IΩ is of the form

IΩ =

{(
χnψ ∗

0 ψ−1

)
: ∗ ≡ 0 mod pm

}
,

for some m ≥ 0, where χn : IΩ → (Z/pnZ)× is the pn-th cyclotomic character, and ψ : IΩ →
{±1} is induced by the character ψ℘ of part (1).

(c) The reduction of E/L at ℘ is bad multiplicative if and only if the character ψ℘ is unramified
at ℘ (i.e., ψ is trivial on IΩ), if and only if f(ψ) = 1 (in the notation of Theorem 4.9).

(d) The number m that appears in part (b) satisfies m ≤ νp(−ν℘(j)).
(e) Let χn, δ(ψ), and f(ψ) be as in Theorem 4.9. Suppose that there is a number a ≥ 1 such

that
• E/L does not admit a L-rational isogeny of degree pa, or
• m ≤ νp(−ν℘(j)) ≤ a− 1, or
• Suppose that m ≥ 1 (where m is as in (b)), and if E/L admits a L-rational isogeny φ of
degree p, such that ker(φ) = 〈S〉 ⊂ E[p], then the ramification index of ℘ in the Galois
extension L(S)/L satisfies e(℘,L(S)/L) > f(ψ). If so, here set a = 1.

Then, the conclusions of Cor. 4.11 hold, for every R ∈ E[pn] of exact order pn, with n ≥ a.
Then there is a prime ΩR of L(R) over ℘ such that e(ΩR|℘) is divisible by |χn|/δ(ψ), or
f(ψ)pn−a+1, or |χn|/pmin{a−1,νp(|χn|)}. In particular, e(ΩR|℘) is divisible by

ϕ(pn)/ gcd(ϕ(pn), δ(ψ)e(℘|p)pa−1) or f(ψ)pn−a+1.

(f) Suppose that m ≥ 1 (where m is as in (b)), and if E/L admits a L-rational isogeny φ of
degree p, such that ker(φ) = 〈S〉 ⊂ E[p], then the ramification index of K(S)/K is > 1, or
the ramification index of ℘ in the Galois extension L(S)/L satisfies

e(℘,L(S)/L)/ gcd(e(℘,L(S)/L), e(K/Lnr
℘ )) > 1,

where K/Lnr
℘ is the smallest extension such that E/K has multiplicative reduction. Then,

there is a prime ΩR of L(R) over ℘ such that e(ΩR|℘) is divisible by

ϕ(pn)/ gcd(ϕ(pn), [K : Lnr
℘ ]e(℘|p)) or pn,

where [K : Lnr
℘ ] = 1 or 2.

Proof. Let L, ℘, E/L, and ι be as in the statement of the theorem and let j0 = j(E). By assumption,
ν℘(j0) < 0. By the theory of Tate curves (see our remarks at the beginning of this section), there
is a q ∈ L∗℘ such that ν℘(q) > 0 and j(Eq) = j0. By Lemma 4.12, part (1), the curves E/L℘ and
Eq/L℘ are either isomorphic over L℘, or they are a quadratic twist of each other. This proves (a).
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Since Eq(L℘) ∼= L℘/q
Z (see [44, Ch. V, Theorem 3.1.(d)]), it follows that

L℘(Eq[p
n]) ∼= L℘(ζpn , q

1/pn).

In particular, there is a basis {P,Q} of Eq[pn] such that the inertia subgroup I of Gal(L℘(Eq[p
n])/L℘)

is of the form

I =

{(
χn b
0 1

)
: b ≡ 0 mod pm

}
,

where χn : I → (Z/pnZ)× is the pn-th cyclotomic character, andm is the largest non-negative integer
such that q ∈ (L∗℘)p

m . By part (a), the curve E/L℘ is a twist of Eq by some trivial or quadratic
character ψπ : Gal(L℘/L℘) → {±1}. Since IΩ = I(Ω|π) ∼= I, and if we define ψ : IΩ

∼= I → {±1}
character induced by ψπ, then it is clear that IΩ has the shape claimed by the statement of the
theorem. This shows (b).

Part (c) follows from the fact that E and Eq are isomorphic over L℘ if and only if E/L has split
multiplicative reduction at ℘ ([44, Ch. V, Theorem 5.3(b)]). If E/L has non-split multiplicative
reduction, then E and Eq are isomorphic over a quadratic unramified extension of L℘, and so in this
case ψ℘ is non-trivial, but its restriction to inertia is trivial (i.e., ψ is unramified). Finally, if E/L
has additive reduction (potential multiplicative), then E and Eq are isomorphic over a quadratic
ramified extension of L℘, and in this case ψ is quadratic, non-trivial, and ramified.

We have seen that m is the largest non-negative integer such that q ∈ (L∗℘)p
m . Since q ∈ L∗℘ and

ν℘(q) > 0, it follows that ν℘(q) is a positive multiple of pm. Hence, −ν℘(j) = ν℘(q) is a multiple of
pm or, in other words, νp(−ν℘(j)) ≥ m. This shows (d).

Suppose that one of the three conditions listed in (e) is satisfied for a ≥ 1. In order to apply
Corollary 4.11, we let K = Lnr

℘ and the needed hypothesis is that e(Lnr
℘ (S)/Lnr

℘ ) = e(℘,L(S)/L) >
f(ψ). Thus, the results cited in (e) follow from Cor. 4.11.

Otherwise, for (f), letK/Lnr
℘ be the smallest extension such that E/K has multiplicative reduction.

In this case, K is the fixed field by the kernel of ψ℘ which is a trivial or quadratic character, so
[K : Lnr

℘ ] = 1 or 2, and over K, ψ℘ is trivial (so f(ψ) = 1 in this case). Now the needed hypothesis to
apply Cor. 4.11 is that K(S)/K > 1 or e(℘,L(S)/L)/ gcd(e(℘,L(S)/L), e(K/Lnr

℘ )) > 1. Moreover,
e = e(K/Qp) = [K : Lnr

℘ ]e(℘|p). Hence, there is a prime ΩR of L(R) over ℘ such that e(ΩR|℘) is
divisible by

ϕ(pn)/ gcd(ϕ(pn), [K : Lnr
℘ ]e(℘|p)) or pn,

as desired. �

6. Potential good reduction

Let L be a number field with ring of integers OL, let p ≥ 2 be a prime, let ℘ be a prime ideal of
OL lying above p, and let L℘ be the completion of L at ℘. Let E be an elliptic curve defined over L
with potential good (ordinary or supersingular) reduction at ℘. Let us fix an embedding ι : L ↪→ L℘.
Via ι, we may regard E as defined over L℘. Let Lnr

℘ be the maximal unramified extension of L℘.
We follow Serre and Tate (see in particular [41] p. 498, Cor. 3) to define an extension KE of Lnr

℘ of
minimal degree such that E has good reduction over KE . Let ` be any prime such that ` 6= p, and let
T`(E) be the `-adic Tate module. Let ρE,` : Gal(Lnr

℘ /L
nr
℘ )→ Aut(T`(E)) be the usual representation

induced by the action of Galois on T`(E). We define the field KE as the extension of Lnr
℘ such that

Ker(ρE,`) = Gal(Lnr
℘ /KE).
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In particular, the field KE enjoys the following properties:
(1) E/KE has good (ordinary or supersingular) reduction.
(2) KE is the smallest extension of Lnr

℘ such that E/KE has good reduction, i.e., if K ′/Lnr
℘ is

another extension such that E/K ′ has good reduction, then KE ⊆ K ′.
(3) KE/L

nr
℘ is finite and Galois. Moreover (see [39], §5.6, p. 312 when L = Q, but the same

reasoning holds over number fields, as the work of Néron is valid for any local field, [35]
pp. 124-125):
• If p > 3, then KE/L

nr
℘ is cyclic of degree 1, 2, 3, 4, or 6.

• If p = 3, the degree of KE/L
nr
℘ is a divisor of 12.

• If p = 2, the degree of KE/L
nr
℘ is 2, 3, 4, 6, 8, or 24.

Let e be the ramification index in KE/Qp. Since e/e(℘|p) = [KE : Lnr
℘ ], the value of e can be

obtained directly from e(℘|p) and a model of E/L, thanks to the classification of Néron models. As
a reference for the following theorem, the reader can consult [35], pp. 124-125, or [39], §5.6, p. 312,
where Gal(KE/L

nr
℘ ) is denoted by Φp, and therefore e/e(℘|p) = Card(Φp). Notice, however, that

the section we cite of [39] restricts its attention to the case L = Q.

Theorem 6.1. Let p > 3, let E/L be an elliptic curve with potential good reduction, and let ∆L be
the discriminant of any model of E defined over L. Let KE be the smallest extension of Lnr

℘ such
that E/KE has good reduction. Then e/e(℘|p) = [KE : Lnr

℘ ] = 1, 2, 3, 4, or 6. Moreover:
• e/e(℘|p) = 2 if and only if ν℘(∆L) ≡ 6 mod 12,
• e/e(℘|p) = 3 if and only if ν℘(∆L) ≡ 4 or 8 mod 12,
• e/e(℘|p) = 4 if and only if ν℘(∆L) ≡ 3 or 9 mod 12,
• e/e(℘|p) = 6 if and only if ν℘(∆L) ≡ 2 or 10 mod 12.

Let K = KE , and let νK be a valuation on K such that νK(p) = e and νK(π) = 1, where π is a
uniformizer for K. Let A be the ring of elements of K with valuation ≥ 0, let M be the maximal
ideal of A, and let F = A/M be the residue field of K. We fix a minimal model of E over A with
good reduction, given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ai ∈ A. In particular, the discriminant ∆ is a unit in A. Moreover, since E/A has good
reduction, we have an exact sequence

0→ Xpn → E(K)[pn]→ Ẽ(F)[pn]→ 0,

where πn : E(K)[pn] → Ẽ(F)[pn] is the homomorphism given by reduction modulo M, and Xpn is
the kernel of πn (see [43, Ch. VII, Thm. 2.1]). By taking inverse limits and tensoring with Qp, we
obtain another exact sequence

0→ X → Vp(E)→ Vp(Ẽ)→ 0,

where X = (lim←−Xpn)⊗Qp, and Vp(E) = Tp(E)⊗Qp. We distinguish two cases, according to whether
the Hasse invariant of E/F is non-zero (ordinary reduction) or zero (supersingular reduction).

6.1. Good ordinary reduction. Let E/K be an elliptic curve with good ordinary reduction, i.e.,
the reduction of E modM, denoted by Ẽ/F, is an elliptic curve and its Hasse invariant is non-zero.
It follows that Xpn and Ẽ(F)[pn] are groups with pn elements ([43, Ch. V, Thm. 3.1]). The Galois
group GK = Gal(K/K) fixes Xpn . If we choose a Z/pnZ-basis {Pn, Qn} of E(K)[pn], such that
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Xpn = 〈Pn〉, then DK,n, the image of GK in Aut(E[pn]) = GL(2,Z/pnZ), is contained in a Borel
subgroup, i.e.,

DK,n ≤
{(
∗ ∗
0 ∗

)}
.

Let IK ≤ GK be the inertia subgroup and let IK,n be the image of IK in Aut(E[pn]) = GL(2,Z/pnZ).
Then IK acts on Xpn via χ : GK → (Z/pnZ)×, the cyclotomic character modulo pn, and IK acts on
Ẽ(F)[pn], trivially (see [39, Prop. 11]). Thus,

IK,n ≤
{(

χ ∗
0 1

)}
.

In what follows, we fix a prime Ω of L over ℘, and let ι : L ↪→ L℘ be the embedding associated
to Ω. Via ι, we may consider an elliptic curve E/L as an elliptic curve defined over L℘. Let Ω

be a prime of L(E[pn]) lying under Ω, and let DΩ,n and IΩ,n be respectively the decomposition
and inertia subgroups of Gal(L(E[pn])/L) associated to Ω. In this setting DK,n, the image of Gp
in GL(2,Z/pnZ), can be identified with a subgroup of DΩ,n, and IK,n is a subgroup of the inertia
subgroup of IΩ,n, with equality if K = Lnr

℘ (i.e., if E/L has good reduction and not just potential
good reduction).

Lemma 6.2. Let p > 2. Let E/L be an elliptic curve with potential good ordinary reduction at a
prime ℘ of L, and let K/Lnr

℘ be as before. With notation as above, suppose that IK,m is diagonalizable
but IK,m+1 is not, for some m ≥ 1 (or m =∞ if IK,m is diagonalizable for all m ≥ 1). Then there
is a Zp-basis B of Tp(E) such that the image of inertia, IK , has the following structure:

IK =

{(
χ b
0 1

)
: b ≡ 0 mod pm

}
≤ GL(2,Zp),

where χ : Gal(K/K)→ Z×p is the cyclotomic character.

Proof. By the remarks at the beginning of this section, we know that each IK,n and IK = lim←− IK,n

are Borel subgroups of the form
{(

χ ∗
0 1

)}
, with respect to some basis {P,Q} of E[pn] or Tp(E),

respectively, where χ is the cyclotomic character. By Lemma 4.2, there is a basis {P,Q′} such that
IK = IdI1, where

Id =

{(
χ 0
0 1

)}
, and I1 = IK ∩

{(
1 ∗
0 1

)}
.

Since I1 is an abelian subgroup of IK , the top right coordinates of the matrices in I1 form an additive
subgroup H of Zp, say H = ptZp for some t ≥ 0. Thus,

I1 =

{(
1 b
0 1

)
: b ∈ ptZp

}
.

First, suppose that m is finite. Since IK,m ≡ IK mod pm is diagonalizable, we must have t ≥ m, and
since IK,m+1 is not diagonalizable, it follows t = m. This shows that

IK =

{(
χ b
0 1

)
: b ≡ 0 mod pm

}
≤ GL(2,Zp),

as desired. If m =∞, then t must be arbitrarily large, and so b ∈ (0). �
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By Lemma 6.2, the inertia subgroup IK is a Borel (with trivial character ψ as in the notation of
Lemma 4.7, so δ(ψ) = f(ψ) = 1), and we can use the machinery of Section 4. In particular, Theorem
4.9 and Corollary 4.11, together with our previous remarks in this section, imply the following result.

Theorem 6.3. Let L be a number field, ℘ a prime of L above p > 2, and let E/L be an elliptic
curve with potential good ordinary reduction at ℘. Let K/Lnr

℘ be smallest extension such that there
is a curve E′/K, isomorphic to E over K, with good reduction. Let IK,n be inertia subgroup of
Gal(K(E′[pn])/K). Suppose there is m ≥ 1 such that IK,m is diagonalizable, but IK,m+1 is not (or
put m =∞). Further, suppose that there is a number a ≥ 1 such that

(1) E/L does not admit a L-rational isogeny of degree pa, or
(2) m ≤ a− 1, or
(3) If E/L admits a L-rational isogeny φ of degree p, with ker(φ) = 〈S〉 ⊂ E[p], then the

ramification index of K(S)/K is > 1, or the ramification index of ℘ in the Galois extension
L(S)/L satisfies

e(℘,L(S)/L)/ gcd(e(℘,L(S)/L), e(K/Lnr
℘ )) > 1.

In this case, the conclusions below work with a = 1.
Then, Cor. 4.11 holds for E/L and the value of a given by (1), (2), or (3). In particular, if R ∈ E[pn]
is a point of exact order pn, with n ≥ a, then there is a prime ΩR of L(R) over ℘ such that e(ΩR|℘)

is divisible by |χn|, or pn−a+1, or |χn|/pmin{a−1,νp(|χn|)}. In particular, e(ΩR|℘) is divisible by

ϕ(pn)/ gcd(ϕ(pn), e · pa−1) or pn−a+1.

Moreover, the number e is a divisor of 12e(℘|p). If p > 3, the number e is a divisor of 4 if ν℘(∆L) ≡
3, 6, or 9 mod 12, and e is a divisor of 6 if ν℘(∆L) ≡ 2, 4, 8, or 10 mod 12.

We apply Theorem 6.3 to study elliptic curves over Q with potential good ordinary reduction.

Proposition 6.4. Let E/Q and E′/Q be elliptic curves with j-invariants j(E) = −7 · 113 and
j(E′) = −7 · 1373 · 20833. Let f = 1 if E/Q has good reduction at p = 37, and let f = 2 otherwise
(and define f ′ similarly). Then:

(1) E (resp. E′) is a quadratic twist of E1/Q (resp. E′1/Q), the curve with Cremona label “1225h1”
(resp. “1225h2”) and good ordinary reduction at p = 37.

(2) E and E′ admit a Q-rational isogeny of degree 37, but do not admit one of degree 372.
(3) There is a point R ∈ E of exact order 37 such that the ramification index of the primes above

37 in Q(R)/Q is f(ψ), where E (resp. E′) is a quadratic twist of E1/Q (resp. E′1/Q) by the
character ψ.

(4) Let R ∈ E be a point of exact order 37n, for n ≥ 2. Then, there is a prime ΩR of Q(R) over
(37) such that e(ΩR|37) is divisible by ϕ(37n)/37 = ϕ(37n−1), or f · 37n−1.

(5) Let R ∈ E′ be a point of exact order 37n, for n ≥ 1. Then, there is a prime ΩR of Q(R) over
(37) such that e(ΩR|37) is divisible by ϕ(37n), or f ′ · 37n.

Proof. Let E1/Q and E′1/Q be the elliptic curves with Cremona labels “1225h1” and “1225h2”, re-
spectively. Then, j(E1) = −7 · 113 and j(E′1) = −7 · 1373 · 20833. By Lemma 4.12, the curves E and
E′ are, respectively, quadratic twists of E1 and E′1 associated to some characters ψ1 and ψ2. Notice
that f = f(ψ) and f ′ = f(ψ′), where f(ψ) is defined in Theorem 4.9, i.e., f(ψ) = 1 if ψ is unramified
above 37, and = 2 otherwise. Note that δ(ψ) = δ(ψ′) = 1 because p = 37 ≡ 1 mod 4. The fact that
the elliptic curves with j = −7 · 113 and j = −7 · 1373 · 20833 have a Q-rational isogeny of degree 37
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was discussed in Section 3. The classification of rational isogenies also implies that no elliptic curve
over Q admits an isogeny of degree 372.

We can calculate the 37th division polynomial of E1/Q, using Sage or Magma, and find that there
is one non-trivial point Q1 ∈ E1[37] such that Q(Q1) is the number field defined by the polynomial

q(x) = x12 + 91x11 − 510286x10 − 5285035x9 − 13216280x8 + 29005256x7 + 166375776x6

+ 155428049x5 − 180670105x4 − 273432740x3 − 9522366x2 + 10706059x+ 1010821.

Moreover, Q(Q1)/Q is Galois, abelian, and its discriminant is

551709470703125 = 59 · 710.

Therefore, Q(Q1) is unramified at 37. If E is a quadratic twist of E1 by a quadratic character ψ,
then there is some Q1 such that Q(Q1) is Galois, and the ramification at 37 is f(ψ), equal 1 or 2,
depending on whether ψ is respectively unramified (E will have good reduction at 37) or ramified
at 37 (and E will have bad additive reduction at 37). This shows (3) by choosing R = Q1.

Since E/Q does not admit isogenies of degree 372, we can take a = 2. Then, there is a prime ΩR

of Q(R) over (37) such that e(ΩR|37) is divisible by

ϕ(37n)/ gcd(ϕ(37n), f · 37) = ϕ(37n)/37 = ϕ(37n−1) or f · 37n−1,

for all n ≥ 2, as claimed. This shows (4).
The curve E′1 admits a Q-isogeny φ of degree 37. The kernel of φ, the subgroup 〈S〉, can be

calculated explicitly. The x-coordinates of the points in 〈S〉 form a Galois extension Q(x(S))/Q,
where x(S) is a root of the polynomial

p(x) = x18 + 4540x17 + 9432590x16 + 11849891575x15 + 9976762132800x14

+ 5848587595725875x13 + 2353459307197093375x12 + 568092837455595073750x11

+ 10497166901552517018750x10 − 58167719763827256503515625x9

− 29123957981672764259404562500x8 − 8642534874478733951747590312500x7

− 1813067882488802075989763827437500x6

− 280530629803275669434587526141796875x5

− 32092317459295198700901755629420390625x4

− 2653647761299569976280286239100456640625x3

− 150512357183694499353889242415640015234375x2

− 5251411022717638474379194466153432357421875x

− 3148881707222283483037230006935969560314453125/37.

The extension Q(S)/Q is Galois, with discriminant 59 · 712 · 3717, totally ramified at 37 (calculations
performed with Magma, and Sage). In particular,

e(37,Q(S)/Q)/ gcd(e(37,Q(S)/Q), f) ≥ 18/2 = 9 > 1.

Hence, E satisfies conditions (b) or (c) of Theorem 6.3 with a = 1: either m(E) = 0 and (b) applies
with a = 1, or if m(E) ≥ 1, then we can pick a = 1 by (c). In particular, there is a prime ΩR of
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Q(R) over (37) such that e(ΩR|37) is divisible by

ϕ(37n) or f · 37n,

for all n ≥ 1, as claimed. �

Remark 6.5. Suppose E/L has potential good ordinary reduction, but E is not a CM curve. There
is a criterion of Gross to find m such that IK,m is diagonalizable, but IK,m+1 is not. We give a
version here for curves over Q.

Theorem 6.6 (Gross; see [11], p. 514; see also §14-15). Let p be a prime, and let E/Q be an elliptic
curve with ordinary good reduction at p, with j 6= 0, 1728, and assume that E[p] is an irreducible
Gal(Q/Q)-module. Let Dn ≤ Gal(Q(E[pn])/Q) ≤ GL(2,Z/pnZ) be a decomposition group at p.
Let jE = j(E) be the j-invariant of E and let j0 be the j-invariant of the “canonical lifting” of
the reduction of j(E) modulo p, i.e., j0 is the j-invariant of the unique elliptic curve E0/Qp which
satisfies E0 ≡ E mod p and EndQp(E0) ≡ EndFp(E). Then, Dn is diagonalizable if and only if
jE ≡ j0 mod pn+1 if p is odd, and jE ≡ j0 mod 2n+2 if p = 2.

6.2. Good supersingular reduction. The bounds on the ramification indices of extensions gen-
erated by torsion points, in the case of potential supersingular reduction were studied separately by
the author in the articles [26] and [28] (see §1 of [26], or §2 of [28] for the definition of e1). Here we
simply quote the two theorems that are needed to show Theorem 2.1 and Theorem 2.2.

Theorem 6.7 ([28, Theorem 5.9]). Let η ≥ 1 and n ≥ 1 be fixed. Let p be a prime, let L be a
number field, and let ℘ be a prime ideal of OL lying above p, such that e(℘|p) ≤ η. Let E/L be an
elliptic curve with potential supersingular reduction at ℘, let R ∈ E[pn] be a point of exact order pn.
Then, there is a number c = c(E/L,R, ℘) with 1 ≤ c ≤ 24η (with c ≤ 12η if p > 2, and c ≤ 12η if
p > 3), such that the ramification index e(P|℘) of any prime P above ℘ in the extension L(R)/L is
divisible by ϕ(pn)/ gcd(c, ϕ(pn)). Moreover, the following are true.

(1) There is a constant f(η), which depends only on η, such that c|f(η). Moreover f(η) is a
divisor of F (η) = lcm({n : 1 ≤ n < 24η, gcd(n, 6) 6= 1}). If p > 3, then f(η) is a divisor of
F0(η) = lcm({n : 1 ≤ n < 6η, gcd(n, 6) 6= 1}).

(2) Let σ be the smallest non-negative integer such that 8η ≤ 2σ (or such that η ≤ 5σ, if p > 3).
If n > σ + 1, then e(P|℘) is divisible by (p− 1)p2(n−1)−σ/ gcd((p− 1)p2(n−1)−σ, c).

(3) If p > 3η, then e(P|℘) is divisible by (p− 1)pn−1/ gcd(p− 1, c).
(4) If η = 1 and p > 3, then e(P|℘) is divisible by (p2−1)p2(n−1)/6, or (p−1)p2(n−1)/ gcd(p−1, 4).

If η = 1 and p = 3, then e(P|℘) is divisible by ϕ(3n)/ gcd(ϕ(3n), t) with t = 6 or 9.

In Table 2, we give a list of every non-cuspidal Q-rational point on the modular curves X0(pn) of
genus ≥ 1, which correspond to elliptic curves with potential supersingular reduction at the prime p,
together with Cremona labels for curves with the given j-invariant and least conductor. See Section
6 of [28]. We also give the values of e and e1 for each j, which we define next.

We assume from now on that E is an elliptic curve defined over L with potential good supersingular
reduction at ℘. Let ι, K = KE , and A be as before. We fix a minimal model of E over A with good
reduction, given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,
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Table 2: Elliptic curves with potential supersingular reduction on X0(pn)

j-invariant p Examples Good reduction over e e1

j = −215 · 3 · 53 3 27A2, 27A4 Q( 4
√

3, β3 − 120β + 506 = 0) 12 2

j = −11 · 1313 121C2 Q( 3
√

11) 3 1

j = −215 11 121B1, 121B2 Q( 4
√

11) 4 2

j = −112 121C1 Q( 3
√

11) 3 2

j = −172 · 1013/2
17

14450P1 Q( 3
√

17) 3 2

j = −17 · 3733/217 14450P2 Q( 3
√

17) 3 1

j = −215 · 33 19 361A1, 361A2 Q( 4
√

19) 4 2

j = −218 · 33 · 53 43 1849A1, 1849A2 Q( 4
√

43) 4 2

j = −215 · 33 · 53 · 113 67 4489A1, 4489A2 Q( 4
√

67) 4 2

j = −218 · 33 · 53 · 233 · 293 163 26569A1, 26569A2 Q( 4
√

163) 4 2

Remark: the Cremona labels are the representatives in this class of least conductor.

with ai ∈ A. Let Ê/A be the formal group associated to E/A, with formal group law given by a
power series F (X,Y ) ∈ A[[X,Y ]], as defined in Ch. IV of [43]. Let

[p](Z) =
∞∑
i=1

siZ
i

be the multiplication-by-p homomorphism in Ê, for some si ∈ A for all i ≥ 1. Since E/K has
good supersingular reduction, the formal group Ê/A associated to E has height 2 (see [43, Ch. V,
Thm. 3.1]). Thus, s1 = p and the coefficients si satisfy νK(si) ≥ 1 if i < p2 and νK(sp2) = 0. Let
q0 = 1, q1 = p and q2 = p2, and put ei = νK(sqi). In particular e0 = νK(s1) = νK(p) = e, and
e1 = νK(sp), and e2 = νK(sp2) = 0. Then, the multiplication-by-p map can be expressed as

[p](Z) = pf(Z) + πe1g(Zp) + h(Zp
2
),

where f(Z), g(Z) and h(Z) are power series in Z · A[[Z]], with f ′(0) = g′(0) = h′(0) ∈ A×. The
value of e1 is independent of the chosen minimal model for E/A (see [26, Cor. 3.2]).

Theorem 6.8 ([28, Theorem 6.1]). Let (j0, p) be any of the j-invariants that are listed in Table 2,
together with the corresponding prime p of potential supersingular reduction. Let E/Q be an elliptic
curve with j(E) = j0, and let Tn ∈ E[pn] be a point of exact order pn. Then, the ramification index
of any prime ℘ that lies above p in the extension Q(Tn)/Q is divisible by (p− 1)p2n−2/2 if p > 3 and
n ≥ 1, and by 32n−4 if p = 3 and n ≥ 3.

6.3. CM curves. The goal of this section is to show Theorem 1.8. We begin by citing some work
of Silverberg, Prasad, and Yogananda (see also [3] for related work).
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Theorem 6.9 (Silverberg [42], Prasad-Yogananda [38]). Let L be a number field of degree d, and let
E/L be an elliptic curve with complex multiplication by an order O in the imaginary quadratic field
k. Let w = w(O) = |O×| (so w = 2, 4 or 6) and let θ ∈ Z+ be the maximal order of an element of
E(L)tors. Then:

(1) ϕ(θ) ≤ w · d.
(2) If k ⊆ L, then ϕ(θ) ≤ w

2 d.
(3) If L does not contain k, then ϕ(#E(L)tors) ≤ w · d.

An elliptic curve with CM has integral j-invariant and therefore potential good reduction every-
where. Thus, we can apply our results from Section 6 to prove the following theorem, which is
analogous to (1) of Theorem 6.9, except that the bound here is in terms of ramification.

Theorem 6.10. Let L be a number field and let E/L be an elliptic curve with CM by a maximal
order OF of a quadratic imaginary field F . Let p ≥ 2 be a prime, n ≥ 1, and let R ∈ E(L)[pn] be a
torsion point of exact order pn. Then, there if a prime P of OL(R) above a prime ℘ of OL, and an
integer c = c(E/L,P) such that e(P|℘) is divisible by

ϕ(pn)/ gcd(ϕ(pn), c).

Moreover, ifKE/L
nr
℘ is the smallest extension such that E/KE has good reduction, and e = e(KE/Qp),

then 1 ≤ c ≤ e. In particular,

ϕ(pn) ≤ e · e(P|℘) ≤ 24e(℘|p)e(P|℘) ≤ 24e(P|p).

Proof. Let E/L be an elliptic curve with CM by the maximal order OF of an imaginary quadratic
field F , let p be a prime, and let R ∈ E(L) be a point of exact order pn, for some n ≥ 1. We
distinguish two cases, according to whether p splits in F/Q, or p is inert or ramified in F/Q.

Suppose first that p is inert or ramified in F/Q. Then E has potential supersingular reduction at
any prime ℘ of OL above p. Hence, by Theorem 6.7, for each prime of ℘ of OL there is a constant
1 ≤ c = c(E/L, ℘) ≤ 24e(℘|p), and a prime P above ℘ in the extension L(R)/L such that e(P|℘) is
divisible by

ϕ(pn)/ gcd(ϕ(pn), c).

Hence,
ϕ(pn) ≤ c · e(P|℘) ≤ 24e(℘|p)e(P|℘) = 24e(P, L(R)/Q).

Now suppose that p is split in F/Q. Then E has potential ordinary reduction at primes of OL
above p. Suppose that pOF = pp. Then, E[pn] ∼= E[pn] ⊕ E[pn]. Let {P,Q} be a Z/pnZ-basis of
E[pn] such that P and Q are generators of E[pn] and E[pn], respectively. Let us write R = λP +µQ.
Since R has exact order pn, it follows that one of λ or µ is non-zero modulo p. Let us assume that
λ 6≡ 0 mod p.

By Lemma 15 of [3], the quadratic imaginary field F is contained in L(E[p]) ⊆ L(E[pn]). Let P be
a prime of L(E[pn]) lying above p, let P be a prime of L(R) below P, and let ℘ a prime of L below
P. Since E[pn] coincides with the kernel of reduction of E(K)[pn] moduloM (the maximal ideal of
K, which is a prime above ℘ of Lnr

℘ ; see Lemma 6.11 below), the action of inertia on P ∈ E[pn] is
given by the cyclotomic character modulo pn. In particular our results from Section 6.1 (specifically
Lemma 4.7, Theorem 4.9 and Remark 4.10) imply that there is a prime P above ℘ in the extension
L(R)/L such that e(P|℘) is divisible by

ϕ(pn)/ gcd(ϕ(pn), e),
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where e = e(KE/Qp) = e(KE/L
nr
℘ )e(℘|p) ≤ 24e(℘|p) as usual. Hence,

ϕ(pn) ≤ e · e(P, L(R)/L) ≤ 24e(℘|p)e(P, L(R)/L) ≤ 24e(P, L(R)/Q).

Thus, it only remains to show the following lemma.

Lemma 6.11. Let E/L, K = KE/L
nr
℘ , P, P, ℘, and p be as above (p splits in F/Q and pOF = pp),

such that E/K has good ordinary reduction, and let Xpn be the kernel of reduction of E(K)[pn]
modulo ℘, so that

0→ Xpn → E(K)[pn]→ E(F)[pn]→ 0

is an exact sequence. Then, Xpn = E[pn].

Proof. First, let us show that we may increase the base field K by a finite extension if we need to.
Suppose K ′/K is a finite extension of local fields, base-extend E to be defined over K ′, let M′ be
the maximal ideal of K ′ above M of K (which in turn is a finite extension of Lnr

℘ ). Since E/K
has good (ordinary) reduction at M, the curve E/K ′ has good (ordinary) reduction at M′. Now
suppose that the kernel of reduction modM′ of E(K

′
)[pn] is X ′pn = E[pn]. Since E is originally

defined over K, we have that E(K)[pn] ∼= E(K
′
)[pn], and if a point R reduces to the origin modulo

M, then it also reduces to the origin moduloM′, becauseM′ dividesM. Hence, X ′pn ⊆ Xpn . Since
|X ′pn | = |Xpn | = pn, we conclude X ′pn = Xpn = E[p] as desired.

Let E ∼= C/Λ and let E′ ∼= E/E[pn] ∼= C/p−nΛ, so that the isogeny φ : C/Λ→ C/p−nΛ has kernel
E[pn] ∼= p−nΛ/Λ. Notice that E[pn] is Gal(L/FL)-stable in this case, so E′ = E/E[pn] is defined
over FL. Let us replace K by FK if necessary (which is finite, and ok by our previous remarks), so
we will regard both E and E′ as defined over K. The curve E′ may not have good reduction atM.
However, we can find a finite extension of K such that E′ has good reduction at a prime aboveM.
By our preliminary remarks this is ok, so without loss of generality let us assume that both E and
E′ have good (ordinary) reduction moduloM. Now one can show that the reduction of φ modM is
inseparable (this is done in [44], Ch II, §4, p. 126-127), and therefore the reduction of φ is essentially
a qth power Frobenius map (where q is a power of p), i.e.,

φ̃ = ψ̃ ◦ Frobq : Ẽ // Ẽ(q) // Ẽ′

where Frobq : Ẽ → Ẽ(q) is qth power Frobenius, and ψ̃ : Ẽ(q) → Ẽ′ is an isomorphism. Moreover, the
diagram

E
φ //

��

E′

��
Ẽ

φ̃ // Ẽ′

is commutative, where both vertical arrows are reduction modulo M. Since E[pn] is the kernel
of φ, we must have that φ̃(E[pn] modM) = 0. However, the only point mapped to 0 by the qth
power Frobenius is 0 itself, and the isomorphism ψ̃ : Ẽ(q) → Ẽ′ maps 0 to 0, so we conclude that
E[pn] modM = 0, i.e., Xpn = E[pn] as desired. �

This concludes the proof of 6.10. �
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Remark 6.12. The proof of Theorem 6.10 carries over to elliptic curves with CM by a non-maximal
order O, except, perhaps, for the case when p splits in F/Q but p divides the conductor of the order
O. This remaining case will be dealt with in future work.

We refer the reader to Section 6.2 for the definition of e1, a quantity that appears in the next
two results (see also §1 of [26], or §2 of [28]). Moreover, we remark that by Corollary 4.8 of [28], if
p > 3e(℘|p), then e1 is not divisible by p.

Theorem 6.13. Let p > 2 be a prime, let E/L be an elliptic curve with CM by a maximal order OF
in an imaginary quadratic field F , and let φ : E → E′ be an isogeny of degree p defined over L. Let
〈S〉 ⊂ E be the kernel of φ and let ρφ : Gal(L/L)→ (Z/pZ)× be the representation associated to the
action of Galois on S, i.e., σ(S) = ρφ(σ) · S, for each σ ∈ Gal(L/L). Then:

(1) If p is inert or ramified in OF , and ℘ is a prime of L above p, let K = KE be an extension
of Lnr

℘ such that E/KE has good reduction, and let IK ⊆ Gal(K/K) be the inertia subgroup.
Assume that e1 is not divisible by p. Then, ρφ restricted to I is either θe−e1p−1 , or θep2−1, where
θq−1 : I → F×q with q = ph is a fundamental character of level h, and e and e1 are the usual
quantities as defined in Section 6.2. If ρφ|I = θep2−1, then p+ 1|e and the values are in F×p .

(2) If p is split, i.e., pOF = pp, then either
(a) 〈S〉 = E[p] or E[p], and if ℘ is a prime of L above p (resp. ℘′ above p) and KE/L

nr
℘ and

IK = IK,℘ are as before (resp. KE/L
nr
℘′ and IK,℘′), then ρφ restricted to IK,℘ (resp. IK,℘′)

is given by θep−1, or
(b) The character θep−1 : IK,℘ → F×p is trivial, for any prime ℘ of OL above p.

Proof. If p is inert or ramified in OF , then E/L has potential supersingular reduction at any prime
℘ of OL. By the results of [39], §1.10 and §1.11,

• If pe/(p + 1) > e1, then there is an Fp-basis {P,Q} of E[p] such that the action of IK in
on E[p] is given by a Borel subgroup B of GL(2,Fp) such that the diagonal characters are
θe−e1p−1 and θe1p−1. Moreover, since e1 is not divisible by p, the ramification in the extension
KE(E[p])/KE is divisible by p (by Proposition 5.6 of [28]) and therefore the upper right hand
corner of the Borel B is non-trivial. It follows that the only inertia-stable subspace of E[p]
is 〈P 〉, and the action is given by θe−e1p−1 . We conclude that ρφ|IK = θe−e1p−1 as claimed.
• If pe/(p + 1) ≤ e1, then the action of inertia IK on E[p] is given by θep2−1, and therefore
the action in terms of a basis of E[p] is given by the e-th power of a (full) non-split Cartan
subgroup Cns of GL(2,Fp). Since the eigenvalues of a non-diagonal matrix in Cns are not in
Fp, then E[p] has a 1-dimensional Fp-submodule that is fixed by inertia if and only if Cens
only contains diagonal entries. In particular, (p+ 1)|e and ρφ|IK = θep2−1.

If p splits in OF with pOF = pp, then we may write E[p] = E[p]⊕E[p] = 〈P,Q〉, where P generates
E[p] and Q = P generates E[p]. Then the action of Gal(L/L) on E[p] in terms of the Fp-basis
{P,Q} is given by a subgroup of the normalizer of a split Cartan subgroup of GL(2,Fp). Suppose
E/L admits a L-rational isogeny of degree p, with kernel 〈S〉 with S = λP + µQ.

Suppose that there is a prime ℘ of OL above p such that the character θep−1 : IK,℘ → F×p is non-
trivial. Now let P be a prime of L(E[p]) above ℘. Since F ⊂ L(E[p]), we have that P is above p or p
of OF . Without loss of generality let us assume P is above p. Let K = KE be the smallest extension
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of Lnr
℘ such that E/K has good reduction. By our previous lemma, IK,℘ acts on E[p] = 〈P,Q〉 as(

θep−1 ∗
0 1

)
.

Since θep−1 is non-trivial, there is σ ∈ IK,℘ such that θ = θep−1(σ) 6≡ 1 mod p. Let σ′ be an element
of IK,℘ whose action on E[p] is given by a diagonal matrix with diagonal entries θ and 1 (such a σ′
exists because θep−1(IK,℘) is a Borel subgroup, and when p > 2 we can use Lemma 4.2). Thus,

σ′(S) = σ′(λP + µQ) = λθP + µQ,

and σ′(S) = nS for some n ≥ 1 if and only if µ ≡ nµ mod p, so µ ≡ 0 (so 〈S〉 = E[p]), or
n ≡ 1 mod p. But if n ≡ 1 mod p, then λθ ≡ λ which implies λ ≡ 0, so 〈S〉 = E[p].

Hence 〈S〉 = E[p] or E[p], unless all characters θep−1 : IK,℘ → F×p are trivial for all ℘ above p. �

Corollary 6.14. Let p > 2, E/L with CM by the maximal order OF ⊆ F , K = KE, φ, 〈S〉, and
ρφ be as before. If p is ramified or inert in OF , assume that e1 is not divisible by p. Let K1 be the
subfield of K(S) fixed by the kernel of ρ12

φ . Then, either p − 1 is a divisor of e (which in turn is a
divisor of 24e(℘|p)) for any ℘ of OL above p, or there is a prime ℘ of OL and a prime P of L1, such
that the ramification index e(P|℘) is divisible by (p− 1)/ gcd(p− 1, 12t) for t = e, or e− e1, and the
ramification in K1/K is also divisible by (p− 1)/ gcd(p− 1, 12t).

Proof. By Theorem 6.13, either θep−1 is trivial for all ℘ over p, or ρφ|IK = θe−e1p−1 or θep2−1 and p+ 1|e.
If θep−1 is trivial for all ℘ over p, and since the fundamental character θp−1 is surjective ([39], §1.7),

it follows that e is divisible by p− 1.
If ρ12

φ |IK = θ
12(e−e1)
p−1 or θ12e

p2−1, and K1 is the subfield of K(S) fixed by the image of ρ12
φ |IK ,

then the ramification in the extension K1/K is divisible by (p − 1)/ gcd(p − 1, 12(e − e1)) or by
(p2−1)/ gcd(p2−1, 12e). In particular, the ramification inK1/K is divisible by (p−1)/ gcd(p−1, 12t)
with t = e− e1 or e. Hence, by Remark 4.8 there is a prime P of OL(S) above ℘ such that e(P|℘) is
divisible by (p− 1)/ gcd(p− 1, 12t), as claimed. �

7. Auxiliary results for the proof of Theorem 1.9

In this section we collect a number of auxiliary results that will be used in the proof of Theorem
1.9 in Section 8. In order to apply Theorem 2.1 to all elliptic curves defined over a number field
L, we need some control on those curves that admit L-rational isogenies of p-power order. For an
elliptic curve E/L we denote by ρE,p the Galois representation Gal(L/L)→ Aut(Tp(E)) associated
to the natural action of Galois on the p-adic Tate module Tp(E) of the curve E.

Theorem 7.1. Let p be a prime, and let L be a number field. Fix an element j0 ∈ L. Then, there is
a number n = n(p, j0) such that for any elliptic curve E/L without CM and with j(E) = j0 we have
1 + pnM2(Zp) ⊆ ρE,p(Gal(L/L)). In particular, E/L does not admit L-rational isogenies of degree
pa(p,j0) with a(p, j0) = n(p, j0) + 1.

Proof. The existence of n = n(p, j0) is shown in [1, Lemma 2.8]. Let E/L be an elliptic curve without
CM, and suppose

1 + pnM2(Zp) ⊆ ρE,p(Gal(L/L)).

Then, E/L cannot admit a L-rational isogeny of degree pn+1. Indeed, if E/L admits an isogeny φ
of degree pn+1, then there is a point R ∈ E of order pn+1 such that 〈R〉 is Gal(L/L)-invariant.
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Hence, there is some S ∈ E[pn+1], such that {R,S} is a Z/pn+1Z-basis of E[pn+1], and such
that ρE,p(Gal(L/L)) mod pn+1 is a Borel subgroup of GL(2,Z/pn+1Z). But, by assumption, 1 +

pnM2(Z/pn+1Z) ⊆ ρE,p(Gal(L/L)) mod pn+1, which contradicts the fact that ρE,p(Gal(L/L)) mod
pn+1 is a Borel subgroup of GL(2,Z/pn+1Z). �

Momose has given a classification of isogenies of prime degree over number fields (see [34, Theorem
A]), but here we use another classification recently shown by Larson and Vaintrob, which we cite
next.

Theorem 7.2 (Larson, Vaintrob, [23]). Let L be a number field. Then, there exists a finite set SL
of prime numbers, depending only on L, such that for a prime p 6∈ SL, and an elliptic curve E/L for
which E[p]⊗ Fp is reducible with degree 1 associated character ψ, one of the following holds.

(1) There exists a CM elliptic curve E′, which is defined over L and whose CM-field is contained
in L, with a p-adic degree 1 associated character whose mod p reduction ψ′ satisfies

ψ
12

=
(
ψ
′
)12

.

(2) The Generalized Riemann Hypothesis fails for L(
√
−p), and

ψ
12

= χp
6,

where χp is the cyclotomic character. (Moreover, in this case we must have p ≡ 3 mod 4 and
the representation ρE,p mod p is already reducible.)

For technical reasons, we need to strengthen Larson and Vaintrob’s result, so that the curve E′ in
(1) hash CM by a maximal order. Before we do that, we recall that if E′/L is an elliptic curve with
CM by an order Of of conductor f ≥ 1 of an imaginary quadratic field F , such that F (j(E′)) ⊆ L,
then there is an elliptic curve E′′/L with CM by the full ring of integers OF , and an L-rational
isogeny E′ → E′′ that is cyclic of degree f . Indeed, the isogeny arises from the inclusion Of ⊆ OF
which induces a map E′ ∼= C/Of → C/OF ∼= E′′, with kernel OF /Of ∼= Z/fZ. Note that the kernel
is isomorphic to OF /Of ∼= fOF /fOf ⊆ Of/fOf , which is a cyclic group of order f that is invariant
under the action of Galois (recall that Gal(L(E′[f ])/L) ↪→ AutOf/fOf (E′[f ]) ∼= (Of/fOf )× as long
as F (j(E′)) ⊆ L; see [44, Ch 2., Theorem 2.3]). Hence, T = fOF /fOf is a cyclic L-rational subgroup
of order f , the quotient E′′ = E′/T is an elliptic curve defined over L, and the map E′ → E′′ is an
L-rational isogeny.

Lemma 7.3. Let L be a number field, let E′/L be an elliptic curve with CM by an order Of of
conductor f ≥ 1, contained in an imaginary quadratic field F , and suppose that the CM-field of E′ is
contained in L. Further, assume that E′ has a p-isogeny with associated mod-p character ψ′ of degree
1, where p is a prime with gcd(p, f) = 1. Then, there is an elliptic curve E′′/L with CM by the
maximal order OF , such that F (j(E′′)) ⊆ L and E′′ has another p-isogeny with the same associated
mod-p character ψ′ of degree 1.

Proof. Suppose E/L is an elliptic curve with CM by the order Of of conductor f ≥ 1 inside the
quadratic imaginary field F , and such that F (j(E)) ⊆ L. Then, there exists an elliptic curve E′′/L
with CM by OF and a canonical L-rational isogeny φ : E′ → E′′ that is cyclic of degree f (see
the paragraph before the statement of the lemma). Since gcd(p, f) = 1, the isogeny φ induces an
isomorphism φ : E′[p] ∼= E′′[p] defined over L. Now suppose that E′ has a p-isogeny with kernel
〈P 〉 and its associated isogeny character is ψ′ : Gal(L/L)→ (Z/pZ)×, such that σ(P ) = ψ′(σ)P for
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any σ ∈ Gal(L/L). Then, the isomorphism E′[p] ∼= E′′[p] implies that E′′ also has a p-isogeny with
kernel 〈φ(P )〉 and σ(φ(P )) = φ(σ(P )) = φ(ψ′(σ)P ) = ψ′(σ)φ(P ), where the action of σ commutes
with both φ and [ψ′(σ)] because both maps are defined over L. Hence, the isogeny character for E′′
is also ψ′ as claimed. �

Now we are ready to prove the following variant of Theorem 7.2.

Theorem 7.4. Let L be a number field. Then, there exists a finite set SL of prime numbers,
depending only on L, such that for a prime p 6∈ SL, and an elliptic curve E/L for which E[p] ⊗ Fp
is reducible with degree 1 associated character ψ, one of the following holds.

(1) There exists an elliptic curve E′′ with CM by the full ring of integers OF of an imaginary
quadratic field F , such that E′′ is defined over L, its CM-field is contained in L, and has a
p-adic degree 1 associated character whose mod p reduction ψ′ satisfies

ψ
12

=
(
ψ
′
)12

.

(2) The Generalized Riemann Hypothesis fails for L(
√
−p), and

ψ
12

= χp
6,

where χp is the cyclotomic character. (Moreover, in this case we must have p ≡ 3 mod 4 and
the representation ρE,p mod p is already reducible.)

Proof. Let L be a number field of degree d. It is well known that there are only finitely many
imaginary quadratic fields with class number less or equal than a given bound d (see [10]). Moreover,
the class number of an order contained in a maximal order grows with the conductor ([4, Theorem
7.24]). Hence, there are only finitely many j-invariants with CM defined over L (see also [5] for some
bounds on the number of j-invariants defined over a number field), say {j1, . . . , jn}, associated to
orders Of1 , . . . ,Ofn with conductors f1, . . . , fn ≥ 1. Let SL be the set of primes given by Theorem
7.2, and enlarge it by adding to SL all the prime divisors of f1, . . . , fn (in particular, SL is still a
finite set of prime numbers).

Now, for a prime p 6∈ SL, and an elliptic curve E/L for which E[p]⊗Fp is reducible with degree 1
associated character ψ, either (1) or (2) of Theorem 7.2 holds. If (2) holds, we are done. If (1) holds,
then there exists a CM elliptic curve E′, which is defined over L and whose CM-field is contained

in L, with a p-adic degree 1 associated character whose mod p reduction ψ′ satisfies ψ12
=
(
ψ
′
)12

.

If E′ has CM by an order Of of conductor f ≥ 1, and since F (j(E′)) ⊆ L by assumption, we must
have f = fi for some 1 ≤ i ≤ n. Since p 6∈ SL, and SL contains all prime divisors of f , we have
gcd(p, f) = 1. Hence, Lemma 7.3 applies, and there is an elliptic curve E′′/L with CM by the
maximal order OF , such that F (j(E′′)) ⊆ L and E′′ has a p-isogeny with the same associated mod-p
character ψ′ of degree 1, as claimed. �

In order to apply Theorem 7.4 in the proof of Theorem 1.9, we need uniform bounds on the
ramification in the fixed fields by kernels of powers of the cyclotomic character.

Lemma 7.5. Let p > 2, and let e(℘|p) be the ramification index in L/Q of a prime ℘ of OL lying
above p. Then, the ramification index of any prime ideal of L(ζpn) above ℘ is divisible by the quantity
ϕ(pn)/ gcd(ϕ(pn), e(℘|p)).
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More generally: let GL = Gal(L/L), and let χp,n : GL → (Z/pnZ)× be the pn-th cyclotomic
character. Let s ≥ 1, and let Ln,s ⊆ L(ζpn) be the fixed field by the kernel of χsp,n. Then, the
ramification index of any prime ideal of Ln,s above ℘ is divisible by ϕ(pn)/ gcd(ϕ(pn), s · e(℘|p)).

Proof. Let p > 2, and let ζ = ζpn be a primitive pn-th root of unity. Let Jn = χp(GL) ∼=
Gal(L(ζpn)/L). In particular, Jn and Jsn = χsp,n(GL) are cyclic subgroups of (Z/pnZ)×. More-
over, Jsn ∼= Gal(Ln,s/L), where Ln,s is the fixed field by the kernel of χsp,n. Note that |Jsn| =
|Jn|/ gcd(|Jn|, s) because Jn is cyclic. Let Fn,s be a Galois extension of Q contained in Q(ζpn) such
that Gal(Fn,s/Q) ∼= ((Z/pnZ)×)s. It follows that the compositum of Fn,s and L is Ln,s. Consider
the following diagram of fields, and primes above p.

Ln,s = LFn,s P ⊂ OLn,s

L Fn,s ℘ ⊂ OL P ⊂ OFn,s

Q (p) ⊂ Z

Thus, by the multiplicativity of ramification indices in towers, we have

e(P|℘) · e(℘|p) = e(P|P) · e(P|p) = e(P|P) · [Fn,s : Q]

= e(P|P) · ϕ(pn)

gcd(ϕ(pn), s)

= e(P|P) ·
ϕ(pn)

gcd(ϕ(pn),s)

gcd( ϕ(pn)
gcd(ϕ(pn),s) , e(℘|p))

· gcd

(
ϕ(pn)

gcd(ϕ(pn), s)
, e(℘|p)

)

= e(P|P) · ϕ(pn)

gcd(ϕ(pn), s · e(℘|p))
· gcd(ϕ(pn), s · e(℘|p)).

Therefore, ϕ(pn)/ gcd(ϕ(pn), s·e(℘|p)) is a divisor of e(P|℘), for any primeP above ℘, as claimed. �

8. Proof of Theorem 1.9

Let L be a number field and let E/L be an elliptic curve either without CM, or with CM by a
maximal order. Let p > 2 be a prime, and let R ∈ E(L)[pn] be a point of exact order pn, for some
n ≥ 1. If E/L has CM by a maximal order, then Theorem 6.10 shows that there if a prime ΩR of
OL(R) above a prime ℘ of OL, such that

ϕ(pn) ≤ 12e(℘|p)e(ΩR|℘) ≤ 12e(ΩR|p).

Hence, we may restrict ourselves to study curves E/L without CM. For the rest of this proof, let ℘
be a prime of OL such that e(℘|p) = emin(p, L/Q) as in Definition 1.7. Let SL be the finite set of
primes whose existence is shown in Theorem 7.4. Define a new set S′L by

S′L = SL ∪ {p : p− 1 ≤ 122 · e(℘|p)},
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and define
ΣL =

⋃
p∈S′L

Σ(L, p),

where each Σ(L, p) is defined as follows. Let a(L, p) ≥ 1 be the smallest integer such that X0(pa) is
of genus ≥ 2, or X0(pa) is of genus 1 but X0(pa)(L) is finite. By Corollary 3.2, we have a(L, p) ≤
a2(p) ≤ 4 for all p ≥ 3. By our assumption in the genus 1 case, or Faltings’ theorem in the genus ≥ 2
case, the set X0(pa)(L) has only finitely many non-cuspidal L-rational points. We define Σ(L, p) ⊂ L
as the set formed by any j-invariant of an elliptic curve over L without CM that corresponds to non-
cuspidal L-rational point on X0(pa). So, for a given number field L, the set S′L is a finite set of
primes. Hence, ΣL is a finite subset of L.

For each j0 ∈ Σ(L, p), we let a = a(p, j0) be the least positive integer a such that any curve E/L
with j(E) = j0 does not admit L-rational isogenies of degree pa. The existence of a(p, j0) is guaran-
teed by Theorem 7.1 since ΣL only contains non-CM j-invariants. LetA(L, p) = max{a(L, p), a(p, j0) :
j0 ∈ Σ(L, p)}. The number A(L, p) is well-defined because Σ(L, p) is a finite set.

In order to prove Theorem 1.9, we distinguish the following cases:
E/L does not admit L-rational isogenies of degree p, or

E/L admits L-rational isogenies of degree p, and


p 6∈ S′L, or

p ∈ S′L, and

{
j(E) 6∈ ΣL, or
j(E) ∈ ΣL.

First, suppose that E/L does not admit L-rational isogenies of degree p. Then, Theorem 2.1 shows
that there is a constant c = c(E/L, ℘) with 1 ≤ c ≤ 12e(℘|p), and a prime ΩR of L(R) above ℘ such
that the ramification index e(ΩR|℘) is divisible either by

ϕ(pn)/ gcd(ϕ(pn), c), or pn.

In particular, either ϕ(pn) ≤ pn ≤ e(ΩR|℘), or

[L(R) : L] ≥ e(ΩR|℘) ≥ ϕ(pn)

gcd(ϕ(pn), c)
≥ ϕ(pn)

c
.

Thus, in all cases ϕ(pn) ≤ c · e(ΩR|℘) ≤ 12e(℘|p)e(ΩR|℘) ≤ 12e(ΩR|p).
Next, suppose that E/L admits a L-rational isogeny φ of degree pa, for some a ≥ 1. Let

ψ : Gal(L/L)→ (Z/paZ)× be the character associated to the isogeny φ. Note that the existence of
φ implies the existence of a L-rational isogeny φ1 of degree p, with associated character ψ1 = ψ, the
mod p reduction of ψ. Let 〈S〉 ⊆ E[p] be the kernel of φ1.

Suppose first that p 6∈ S′L. In particular, p 6∈ SL, and Theorem 7.4 shows that two options, (1) or
(2), may occur:

• If we are in option (1), then there exists an elliptic curve E′′, with CM by a full ring of
integers Ok, which is defined over L and whose CM-field is contained in L, with a p-adic
degree 1 associated character whose mod p reduction ψ′ satisfies

ψ
12

=
(
ψ
′
)12

.

Let K be the smallest extension of Lnr
℘ such that E′/K has good reduction. Let K1 be the

subfield ofK(S) fixed by the kernel of ρ12
φ1
, and similarly define L1. Since p 6∈ S′L, p > 3e(℘|p),

and by [28, Corollary 4.8], if p > 3e(℘|p), then e1 is not divisible by p (see §1 of [26], or §2 of
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[28] for the definition of e1). Then, by Corollary 6.14, either p−1 is a divisor of e = e(K/Qp)
(which in turn is a divisor of 12e(℘|p)) for any ℘ of OL above p, or the ramification index
in K1/K is divisible by (p − 1)/ gcd(p − 1, 12t) for t = e, or e − e1. Since p 6∈ S′L, we have
p − 1 > 122 · e(℘|p) ≥ 12e ≥ 12t, and therefore the ramification in K(S)/K is > 1. It
follows from Theorem 2.1 that there is a constant c = c(E/L, ℘) with 1 ≤ c ≤ 12e(℘|p),
and a prime ΩR of L(R) above ℘ such that the ramification index e(ΩR|℘) is divisible either
by ϕ(pn)/ gcd(ϕ(pn), c), or pn. In particular, ϕ(pn) ≤ c · e(ΩR|℘) ≤ 12e(℘|p)e(ΩR|℘) ≤
12e(ΩR|p), as before.
• Now consider option (2) of Theorem 7.4. In this case GRH fails for L(

√
−p) and ψ12

= χ6
p,

where ψ and χp are, respectively, the mod p reductions of ψ and χp, the p-adic cyclotomic
character. Let L1,6 be the fixed field of L by the kernel of χ6

p. Then, L1,6 ⊆ L(S) and,
by Lemma 7.5, the ramification index of any prime ideal of L1,6 above ℘ is divisible by
(p− 1)/ gcd(p− 1, 6 · e(℘|p)). Then

A = A(℘,L, S) := e(℘,L(S)/L)/ gcd(e(℘,L(S)/L), e(K/Lnr
℘ ))

is divisible by(
p− 1

gcd(p− 1, 6 · e(℘|p))

)
/ gcd

(
p− 1

gcd(p− 1, 6 · e(℘|p))
, e(K/Lnr

℘ )

)
=

p− 1

gcd(p− 1, 6 · e(℘|p) · e(K/Lnr
℘ ))

.

Since p ≥ 3, then e(K/Lnr
℘ ) is a divisor of 12. Hence, A is divisible by

p− 1

gcd(p− 1, 72 · e(℘|p))
,

and this quantity is > 1 because p 6∈ S′L. Indeed, notice that if p − 1 ≥ 144e(℘|p), then
(p− 1)/ gcd(p− 1, 72 · e(℘|p)) ≥ 2 (because gcd(p− 1, 72 · e(℘|p)) ≤ 72e(℘|p)).

Hence, A(℘,L, S) > 1 and by our Theorem 2.1, there is a constant c = c(E/L, ℘) with
1 ≤ c ≤ 12e(℘|p), and a prime ΩR of L(R) above ℘ such that the ramification index e(ΩR|℘)
is divisible either by

ϕ(pn)/ gcd(ϕ(pn), c), or pn.

So, as before, ϕ(pn) ≤ c · e(ΩR|℘) ≤ 12e(℘|p)e(ΩR|℘) ≤ 12e(ΩR|p).
It remains to consider the case when E/L admits a L-rational isogeny φ of degree pa, for some

a ≥ 1 and p ∈ S′L. If j(E) 6∈ ΣL = ∪p∈S′LΣ(L, p), then our definition of ΣL implies that X0(pa) has
genus ≤ 1, and therefore a ≤ a1(p) ≤ 3 for all p ≥ 3, by Cor. 3.2, and a < a(L, p) ≤ a2(p) (because
j(E) 6∈ Σ(L, p)). Hence E does not admit L-isogenies of degree pa(L,p). In particular, Theorem 2.1
implies that

[L(R) : L] ≥ e(ΩR|℘) ≥ ϕ(pn)

gcd(ϕ(pn), c(E/L, ℘) · pa(L,p)−1)
.

Hence,

ϕ(pn) ≤ c · pa(L,p)−1 · e(ΩR|℘) ≤ 12 · pa2(p)−1 · e(℘|p) · e(ΩR|℘) ≤ 588 · e(ΩR|p),

where we have used the fact that the maximum value of pa2(p)−1 for p > 2 is 49 (see Cor. 3.2).
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If j(E) ∈ ΣL, then a < a(L, p) ≤ A(L, p) by definition of A(L, p), and therefore

[L(R) : L] ≥ e(ΩR|℘) ≥ ϕ(pn)

gcd(ϕ(pn), c(E/L, ℘) · pA(L,p)−1)
.

Let us define
CL = 12 ·max{pA(L,p)−1 : p ∈ S′L},

which is well-defined because S′L is a finite set. Moreover, CL only depends on L. It follows from
our previous work in this proof that, in all cases, we have

ϕ(pn) ≤ c(E/L, ℘) · pA(L,p)−1 · e(ΩR|℘) ≤ CL · e(ΩR|p) ≤ CL · [L(R) : Q],

where, as usual, c ≤ 12e(℘|p). This concludes the proof of Theorem 1.9.
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