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Abstract. Let d ≥ 1 be fixed. Let F be a number field of degree d, and let E/F be an elliptic
curve. Let E(F )tors be the torsion subgroup of E(F ). In 1996, Merel proved the uniform boundedness
conjecture, i.e., there is a constant B(d), which depends on d but not on the chosen field F or on
the curve E/F , such that the size of E(F )tors is bounded by B(d). Moreover, Merel gave a bound
(exponential in d) for the largest prime that may be a divisor of the order of E(F )tors. In 1996,
Parent proved a bound (also exponential in d) for the largest p-power order of a torsion point that
may appear in E(F )tors. It has been conjectured, however, that there is a bound for the size of
E(F )tors that is polynomial in d. In this article we show that if E/F has potential supersingular
reduction at a prime ideal above p, then there is a linear bound for the largest p-power order of
a torsion point defined over F , which in fact is linear in the ramification index of the prime of
supersingular reduction.

1. Introduction

Let F be a number field, and let E/F be an elliptic curve defined over F . The Mordell-Weil theo-
rem states that E(F ), the set of F -rational points on E, can be given the structure of a finitely gen-
erated abelian group. In particular, the torsion subgroup of E(F ), henceforth denoted by E(F )tors,
is a finite group. In 1996, Merel proved that there is a uniform bound for the size of E(F )tors, which
is independent of the chosen curve E/F and, in fact, the bound only depends on the degree of F/Q.
The bounds were improved by Oesterlé, and later by Parent.

Theorem 1.1 (Merel, [7], and Parent, [9]). Let p be a prime, let d > 1 be a fixed integer, let F be a
number field F of degree ≤ d and let E/F be an elliptic curve. Then:

• (Oesterlé, 1996) If E(F ) contains a point of exact order p, then p ≤ (1 + 3d/2)2.
• (Parent, 1999) If E(F ) contains a point of exact order pn, then pn ≤ 129(5d − 1)(3d)6.

In this article, we study the ramification index in the field of definition of pn-th torsion points. Let
L be a number field, let p be a prime, let n ≥ 1, and let ζ = ζpn be a primitive pn-th root of unity.
Let ℘ be a prime ideal of the ring of integers OL of L lying above p. The ramification index of the
primes above ℘ in the extension L(ζ)/L is a divisor of ϕ(pn), where ϕ(·) is the Euler phi function,
and, in fact, it is easy to see that the index is divisible by ϕ(pn)/ gcd(ϕ(pn), e(℘|p)). In this article
we study the ramification above p in the extension L(R)/L, where R is a torsion point of exact order
pn in an elliptic curve E defined over L. In particular, we concentrate on the case when E/L has
potential good supersingular reduction at ℘. We show the following:

Theorem 1.2. Let n ≥ 1 be fixed. Let p be a prime, let L be a number field, and let ℘ be a prime
ideal of OL lying above p. Let E/L be an elliptic curve with potential supersingular reduction at ℘, let
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2 ÁLVARO LOZANO-ROBLEDO

R ∈ E[pn] be a point of exact order pn. Then, there is a computable constant c = c(E/L,R, ℘) with
1 ≤ c ≤ 24e(℘|p) (with c ≤ 12e(℘|p) if p > 2, and c ≤ 6e(℘|p) if p > 3), such that the ramification
index e(P|℘) of any prime P above ℘ in the extension L(R)/L is divisible by

ϕ(pn)/ gcd(ϕ(pn), c(E/L,R, ℘)).

Moreover:
(1) For each η ≥ 1, there is a constant f(η) such that if L is a any number field with e(℘|p) ≤ η,

and E/L and R are as above, then e(P|℘) is divisible by ϕ(pn)/ gcd(ϕ(pn), f(η)).

(2) If e(℘|p) = 1 and p > 3, then e(P|℘) is divisible by either (p2 − 1)p2(n−1)/6, or the quantity
(p− 1)p2(n−1)/ gcd(p− 1, 4).

Theorem 1.2 is shown by providing a complete description and exact formulas of the slopes of the
formal group of E/L (see Corollary 4.2). These formulas lead to exact formulas for the valuation
of the roots of the formal group (see Lemma 5.3), which in turn lead to exact formulas for the
ramification indices above p of the extension L(R)/L when R ∈ E[pn] is a point of exact order pn

(see Proposition 5.6). For instance, if E/Q : y2 + y = x3 − 30x+ 63, and if Rn ∈ E(Q) is a point of
exact order 3n with n ≥ 3, then the ramification index of any prime lying above 3 in the extension
Q(Rn)/Q is divisible by 32n−4, and that is precisely the ramification index for certain choices of Rn
(see Example 5.10). Similarly, if E/Q is the curve with Cremona label 121c2, and Rn ∈ E(Q) is a
point of exact order 11n with n ≥ 1, then the ramification index of any prime lying above 11 in the
extension Q(Rn)/Q is divisible by 5 · 112(n−1), and this is again best possible (see Example 5.11).

Moreover, under the assumptions of Theorem 1.2 we have

[L(R) : L] ≥ e(P|℘) ≥ ϕ(pn)

gcd(ϕ(pn), c(E/L,R, ℘))
≥ ϕ(pn)

24e(℘|p)
,

and therefore
ϕ(pn) ≤ 24e(℘|p)e(P|℘) = 24e(P|p) ≤ 24 · [L(R) : L].

Hence, as a consequence of our main Theorem 1.2, we show a similar bound to Theorem 1.1 in the
supersingular reduction case, which is linear in d (instead of exponential as in Theorem 1.1) and, in
fact, it only depends on the ramification index of a prime of F above p.

Theorem 1.3. Let p be a prime, let d ≥ 1 be a fixed integer, let F be a number field of degree ≤ d,
and let E/F be an elliptic curve, such that E(F ) contains a point of exact order pn. Suppose that F
has a prime P over p such that E/F has potential good supersingular reduction at P. Then,

ϕ(pn) ≤


24e(P|p) ≤ 24d if p = 2,

12e(P|p) ≤ 12d if p = 3,

6e(P|p) ≤ 6d if p > 3,

and e(P|p) is the ramification index of P in F/Q.

Thus, Theorem 1.2 when applied uniformly recovers bounds previously found by Flexor and
Oesterlé, who show |E(F )tors| ≤ 48d under similar hypotheses (see [2], Théorème 2). Our results,
however, emphasize that there is a bound which is linear with respect to a ramification index of
F/Q, and can be regarded as evidence towards the following conjecture of the author, which will be
discussed more in depth in an upcoming article.
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Conjecture 1.4 ([6]). Let p be a prime, let d > 1 be a fixed integer, let F be a number field of degree
≤ d, and let E/F be an elliptic curve, such that E(F ) contains a point of exact order pn. There is
a constant C3 that does not depend on p, d, F or E, such that

ϕ(pn) ≤ C3 · emax(p, F/Q) ≤ C3 · d,

where emax(p, F/Q) is the largest ramification index e(P|p) for a prime P of OF over the rational
prime p.

The paper is organized as follows. In Section 2 we discuss generalities about elliptic curves with
potential good reduction, concentrating on the potential supersingular reduction case. In Section 3
we summarize results on the formal group of elliptic curves with potential supersingular reduction
from [4], which we generalize in Section 4. In Section 5, we use these results to study the p-adic
valuation of pn-th torsion points, and the ramification index of the extensions generated by torsion
points. It is here that we show Theorem 5.9, which subsumes Theorem 1.2. Throughout the paper,
we exemplify our results with the elliptic curves E27a4/Q and E121c2/Q with Cremona labels “27a4”
and “121c2”, and the primes p = 3 and 11, respectively. In the last section of the article, Section 6,
we discuss several other examples that correspond to non-cuspidal rational points on the modular
curves X0(p

n), which appear in applications such as [5], and also we work out an example with an
elliptic curve defined over a (quadratic) number field (see Example 6.2).

Acknowledgements. I would like to thank Kevin Buzzard, Brian Conrad, Harris Daniels, and
Felipe Voloch for several useful references and suggestions.

2. Potential good reduction

Let L be a number field with ring of integers OL, let p ≥ 2 be a prime, let ℘ be a prime ideal of
OL lying above p, and let L℘ be the completion of L at ℘. Let E be an elliptic curve defined over L
with potential good (ordinary or supersingular) reduction at ℘. Let us fix an embedding ι : L ↪→ L℘.
Via ι, we may regard E as defined over L℘. Let Lnr

℘ be the maximal unramified extension of L℘.
We follow Serre and Tate (see in particular [11] p. 498, Cor. 3) to define an extension KE of Lnr

℘ of
minimal degree such that E has good reduction over KE . Let ` be any prime such that ` 6= p, and let
T`(E) be the `-adic Tate module. Let ρE,` : Gal(Lnr

℘ /L
nr
℘ )→ Aut(T`(E)) be the usual representation

induced by the action of Galois on T`(E). We define the field KE as the extension of Lnr
℘ such that

Ker(ρE,`) = Gal(Lnr
℘ /KE).

In particular, the field KE enjoys the following properties:
(1) E/KE has good (ordinary or supersingular) reduction.
(2) KE is the smallest extension of Lnr

℘ such that E/KE has good reduction, i.e., if K ′/Lnr
℘ is

another extension such that E/K ′ has good reduction, then KE ⊆ K ′.
(3) KE/L

nr
℘ is finite and Galois. Moreover (see [10], §5.6, p. 312 when L = Q, but the same

reasoning holds over number fields, as the work of Néron is valid for any local field, [8] p.
124-125):
• If p > 3, then KE/L

nr
℘ is cyclic of degree 1, 2, 3, 4, or 6.

• If p = 3, the degree of KE/L
nr
℘ is a divisor of 12.

• If p = 2, the degree of KE/L
nr
℘ is 2, 3, 4, 6, 8, or 24.
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Example 2.1. Let E = E27a4 be the elliptic curve with Cremona label “27a4”, with j-invariant
j(E) = −215 · 3 · 53, given by a Weierstrass equation

y2 + y = x3 − 30x+ 63.

The elliptic curve E has bad additive reduction at p = 3. The extension K = KE of Qnr
3 is given by

adjoining α = 4
√

3 and a root β of x3 − 120x+ 506 = 0. The result is an extension K = Qnr
3 (α, β) of

degree e = 12.
Let (π) be the unique prime ideal of K above (3). Let E′/K be an elliptic curve isomorphic to

E over K given by an integral model, minimal at (π), with good reduction at ℘. The reduction of
E′/A modulo π is given by y2 ≡ x3 + x + 2 over F3, which is a supersingular elliptic curve. Thus,
E/K is an elliptic curve with supersingular good reduction at the prime above p = 3.

Example 2.2. Let E = E121c2 be the elliptic curve with Cremona label “121c2”, with j-invariant
j(E) = −11 · 1313, and discriminant ∆ = −118, given by a Weierstrass equation

y2 + xy = x3 + x2 − 3632x+ 82757.

The elliptic curve E has bad additive reduction at p = 11, but potential good supersingular reduction
at the same prime. The extension K = KE of Qnr

11 is given by adjoining π = 3
√

11, thus e = 3. The
curve E has a minimal model with good supersingular reduction of the form

y2 +
3
√

11xy = x3 +
3
√

112x2 + 3
3
√

11x+ 2

over Qnr
11(π), where π = 3

√
11, and the discriminant of this model is ∆ = −1.

Let e be the ramification index of K/Qp. Since e/e(℘|p) = [KE : Lnr
℘ ], the value of e can be

obtained directly from e(℘|p) and a model of E/L, thanks to the classification of Néron models. As
a reference for the following theorem, the reader can consult [8], p. 124-125, or [10], §5.6, p. 312,
where Gal(KE/L

nr
℘ ) is denoted by Φp, and therefore e/e(℘|p) = Card(Φp). Notice, however, that

the section we cite of [10] restricts its attention to the case L = Q.

Theorem 2.3. Let p > 3, let E/L be an elliptic curve with potential good reduction, and let ∆L be
the discriminant of any model of E defined over L. Let KE be the smallest extension of Lnr

℘ such
that E/KE has good reduction. Then e/e(℘|p) = [KE : Lnr

℘ ] = 1, 2, 3, 4, or 6. Moreover:
• e/e(℘|p) = 2 if and only if ν℘(∆L) ≡ 6 mod 12,
• e/e(℘|p) = 3 if and only if ν℘(∆L) ≡ 4 or 8 mod 12,
• e/e(℘|p) = 4 if and only if ν℘(∆L) ≡ 3 or 9 mod 12,
• e/e(℘|p) = 6 if and only if ν℘(∆L) ≡ 2 or 10 mod 12.

Example 2.4. Let E = E121c2, defined over L = Q, so e(℘|p) = 1. Since ν℘(∆) = 8, we conclude
that e = 3 by Theorem 2.3, which agrees with KE = Qnr

11(
3
√

11) as we saw in Example 2.2.

Let K = KE , and let νK be a valuation on K such that νK(p) = e and νK(π) = 1, where π is a
uniformizer for K. Let A be the ring of elements of K with valuation ≥ 0, let M be the maximal
ideal of A, and let F = A/M be the residue field of K. We fix a minimal model of E over A with
good reduction, given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ai ∈ A. In particular, the discriminant ∆ is a unit in A. Moreover, since E/A has good
reduction, we have an exact sequence

0→ Xpn → E(K)[pn]→ Ẽ(F)[pn]→ 0,
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where πn : E(K)[pn] → Ẽ(F)[pn] is the homomorphism given by reduction modulo M, and Xpn is
the kernel of πn (see [12], Ch. VII, Thm. 2.1). By taking inverse limits and tensoring with Qp, we
obtain another exact sequence

0→ X → Vp(E)→ Vp(Ẽ)→ 0,

where X = (lim←−Xpn)⊗Qp, and Vp(E) = Tp(E)⊗Qp. We distinguish two cases, according to whether
the Hasse invariant of E/F is non-zero (ordinary reduction) or zero (supersingular reduction).

In this paper, we only discuss the supersingular reduction case (the multiplicative and the ordinary
case will be treated in [6]). We assume from now on that E is an elliptic curve defined over L with
potential good supersingular reduction at ℘. Let ι, K = KE , and A be as before. We fix a minimal
model of E over A with good reduction, given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ai ∈ A. Let Ê/A be the formal group associated to E/A, with formal group law given by a
power series F (X,Y ) ∈ A[[X,Y ]], as defined in Ch. IV of [12]. Let

[p](Z) =
∞∑
i=1

siZ
i

be the multiplication-by-p homomorphism in Ê, for some si ∈ A for all i ≥ 1. Since E/K has good
supersingular reduction, the formal group Ê/A associated to E has height 2 (see [12], Ch. V, Thm.
3.1). Thus, s1 = p and the coefficients si satisfy νK(si) ≥ 1 if i < p2 and νK(sp2) = 0. Let q0 = 1,
q1 = p and q2 = p2, and put ei = νK(sqi). In particular e0 = νK(s1) = νK(p) = e, and e1 = νK(sp),
and e2 = νK(sp2) = 0. Then, the multiplication-by-p map can be expressed as

[p](Z) = pf(Z) + πe1g(Zp) + h(Zp
2
),

where f(Z), g(Z) and h(Z) are power series in Z · A[[Z]], with f ′(0) = g′(0) = h′(0) ∈ A×. The
value of e1 is independent of the chosen minimal model for E/A (see [4], Cor. 3.2).

Example 2.5. Let E/Q be the elliptic curve with Cremona label “27a4” as in Example 2.1. The
multiplication-by-3 map on the associated formal group Ê is given by a power series:

[3](Z) = 3Z + s3Z
3 +O(Z4),

where νK(s3) = 2. Hence, e1 = 2 in this case. (The number s3 was given in Example 2.2 of [4]. We
will calculate e1 in a different way below, in Example 3.4.)

Example 2.6. Let E = E121c2 be the elliptic curve with Cremona label “121c2”. The multiplication-
by-11 map on the associated formal group Ê is given by a power series:

[11](Z) = 11Z − 55πZ2 − 275π2Z3 + 42350Z4 − 181148πZ5 − 659417π2Z6 + 96265708Z7

− 341161040πZ8 − 1521191342π2Z9 + 183261837077Z10 − 497606935519πZ11 +O(Z12).

Since 497606935519 = 17 · 23 · 151 · 8428159 is relatively prime to 11, we conclude that

e1 = νK(s11) = νK(−497606935519π) = 1.
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3. Previous results

In [4], the author has shown several results on the values of e and e1, that we quote here for the
convenience of the reader. Before we state the results, we define quantities r(p) and s(p) for each
prime p > 3, by

r(p) =

{
1, if p ≡ 5 or 11 mod 12,

0, if p ≡ 1 or 7 mod 12,
and s(p) =

{
1, if p ≡ 3 mod 4,

0, if p ≡ 1 mod 4.

Equivalently, r(p) = 1
2

(
1−

(
−3
p

))
and s(p) = 1

2

(
1−

(
−4
p

))
, where

(
·
p

)
is the Legendre symbol.

We also need to define a polynomial Qp(T ), whose existence and properties were shown in Lemma
3.6 of [4].

Definition 3.1. Let p > 3 be a prime and let Pp(X,Y ) be the polynomial in Z[X,Y ] defined by

Pp(X,Y ) =
∑
m,n≥0

4m+6n=p−1

(−1)m+n

( p−1
2

m+ n

)(
m+ n

m

)
(27X)m(54Y )n.

We define Qp(T ) ∈ Z[T ] as the unique polynomial with integer coefficients such that

Pp(X,Y ) = Xr(p)Y s(p)∆b
p
12
cQp(j),

where ∆ and j are defined by 1728∆ = X3 − Y 2 and ∆ · j = X3, where b·c is the greatest integer
function.

Example 3.2. For instance,

P5 = −54X, P7 = −162Y, P11 = 29160XY,

and
P13 = −393660X3 + 43740Y 2 = ∆(E)(−349920j(E)− 75582720).

The corresponding polynomials Qp(T ) are:

Q5(T ) = −54, Q7(T ) = −162, Q11(T ) = 29160, Q13(T ) = −349920T − 75582720.

Theorem 3.3 ([4], Thm. 3.9). Let E/L be an elliptic curve with potential good supersingular
reduction at a prime ℘ above a prime p. Let K = KE be the extension of Lnr

℘ defined above, let
A, e = νK(p), and e1 be as before, and let e(℘|p) be the ramification index of ℘ in L/Q. Let
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 be a minimal model for E/A with good reduction, and let
c4, c6 ∈ A be the usual quantities associated to this model (as defined in [12], Chapter III, §1). Then:

(1) If p = 2, and νK(c4)
4 < e, then

e1 =
νK(c4)

4
=
νK(j(E))

12
=
e · ν℘(j(E))

12e(℘|p)
.

(2) If p = 3, and νK(c4)
2 < e, then

e1 =
νK(c4)

2
=
νK(j(E))

6
=
e · ν℘(j(E))

6e(℘|p)
.
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(3) If p > 3, and λ = r(p)νK(c4) + s(p)νK(c6) + νK(Qp(j(E))) < e, then

e1 = λ

= r(p)
νK(j(E))

3
+ s(p)

νK(j(E)− 1728)

2
+ νK(Qp(j(E)))

=
e

e(℘|p)
·
(
r(p)

ν℘(j(E))

3
+ s(p)

ν℘(j(E)− 1728)

2
+ ν℘(Qp(j(E)))

)
.

Otherwise, e1 ≥ e.

Example 3.4. In Example 2.5 we looked at the elliptic curve E/Q with label “27a4”, for p = 3, and
concluded that e1 = 2. Alternatively, and much easier to compute, we use Theorem 3.3:

λ =
e · ν3(j(E))

6
=

12 · ν3(−215 · 3 · 53))
6

= 2.

Since 2 = λ < e = 12, we conclude that e1 = λ = 2.

If we combine Theorems 3.3 and 2.3, then we reach the following corollary.

Corollary 3.5. Let p > 3 be a prime and let E/L be an elliptic curve with potential supersingular
good reduction at a prime ℘ above p. Let e(℘|p) be the ramification index of ℘ in L/Q. Let j(E) ∈ L
be its j-invariant, let ∆L be the discriminant of a model for E over L, and define an integer λ as
follows:

• If ν℘(∆L) ≡ 6 mod 12, then e/e(℘|p) = 2. Let

λ =
2

3
r(p)ν℘(j(E)) + s(p)ν℘(j(E)− 1728) + 2ν℘(Qp(j(E))),

• If ν℘(∆L) ≡ 4 or 8 mod 12, then e/e(℘|p) = 3. Let

λ = r(p)ν℘(j(E)) +
3

2
s(p)ν℘(j(E)− 1728) + 3ν℘(Qp(j(E))),

• If ν℘(∆L) ≡ 3 or 9 mod 12, then e/e(℘|p) = 4. Let

λ =
4

3
r(p)ν℘(j(E)) + 2s(p)ν℘(j(E)− 1728) + 4ν℘(Qp(j(E))),

• If ν℘(∆L) ≡ 2 or 10 mod 12, then e/e(℘|p) = 6. Let

λ = 2r(p)ν℘(j(E)) + 3s(p)ν℘(j(E)− 1728) + 6ν℘(Qp(j(E))).

If λ < e, then e1 = λ. Otherwise, if λ ≥ e, then e1 ≥ e.

Example 3.6. Let us return to the curve E/Q with label “121c2”. In Examples 2.2 and 2.4 we
showed a minimal model over Qnr

11(
3
√

11) and we proved that e1 = 1. We may also verify this value
using the formula in Corollary 3.5. Here p = 11, so r(11) = s(11) = 1, and L = Q, so e(℘|p) = 1. The
discriminant of the model for E/Q given in Example 2.2 is ∆Q = −118, we have j(E) = −11 · 1313

and j(E)− 1728 = −49732. Hence:

λ = r(p)νp(j(E)) +
3

2
s(p)νp(j(E)− 1728) + 3νp(Qp(j(E))) = 1 · 1 +

3

2
· 1 · 0 + 3 · 0 = 1.

and so, e1 = λ = 1.



8 ÁLVARO LOZANO-ROBLEDO

4. Additional results on the formal group

As we will show below in Corollary 4.2, the values of e and e1 are restricted to certain values in
certain cases. First, we need a lemma.

Lemma 4.1. Let p > 3 be a prime.
(1) If ν℘(j) > 0, then ν℘(Qp(j)) = 0.
(2) If ν℘(j − 1728) > 0 and ν℘(j) = 0, then ν℘(Qp(j)) = 0.

Proof. It follows from the formulae in [4], Lemma 3.6 and Remark 3.8, that

Qp(T ) = qdT
d + . . .+ q1T + q0 =

∑
dfT

f (T − 1728)b
p
12
c−f ,

where f, g ≥ 0, and 0 ≤ f ≤ b p12c, and

df = (−1)m+n ·
( p−1

2

m+ n

)
·
(
m+ n

m

)
· 27m · 54n,

where m = 3f + r(p), and n = 2g + s(p). It follows that the constant term in Qp(T ) is given by
q0 = d0 · (−1728)b

p
12
c. When f = 0 we have m = r(p) and n = 2 · b p12c + s(p). Then the constant

term of Qp(T ) is given by:

q0 = d0 · (−1728)b
p
12
c = (−1)m+n ·

( p−1
2

m+ n

)
·
(
m+ n

m

)
· 27m · 54n · (−1728)b

p
12
c.

Since p > 3, the constant term q0 is not divisible by p. If ν℘(j) > 0, then ν℘(Qp(j)) = ν℘(q0) = 0.
This shows part (1).

For part (2), note that we may write

Qp(j) = db p
12
cj
b p
12
c +

∑
0≤f<b p

12
c

df j
f (j − 1728)b

p
12
c−f .

If we set m = 3 · b p12c+ r(p) and n = s(p), then the coefficient db p
12
c is given by

db p
12
c = (−1)m+n ·

( p−1
2

m+ n

)
·
(
m+ n

m

)
· 27m · 54n.

Since db p
12
c is not divisible by p > 3, and ν℘(j) = 0 and ν℘(j − 1728) > 0 by assumption, it follows

that ν℘(Qp(j)) = 0, as desired. �

The following result extends Corollary 4.6 of [4], which only covered the case when e(℘|p) = 1.

Corollary 4.2. Let E/L be an elliptic curve with potential supersingular reduction at a prime ℘
lying above a prime p > 3, and let e and e1 be defined as in Section 2. Assume that e1 < e. Then,

(1) If j(E) 6≡ 0 or 1728 mod ℘, then e1 = e/e(℘|p) · ν℘(Qp(j));
(2) If j(E) ≡ 0 mod ℘, then e1 = e · ν℘(j)/3e(℘|p), with 1 ≤ ν℘(j) < 3e(℘|p). If ν℘(j) is not

divisible by 3, then e/e(℘|p) = 3 or 6, and e1 = ν℘(j) or 2ν℘(j).
(3) If j(E) ≡ 1728 mod ℘, then e1 = e · ν℘(j − 1728)/2e(℘|p), with 1 ≤ ν℘(j − 1728) < 2e(℘|p).

If ν℘(j − 1728) is even, then e/e(℘|p) = 2 or 4, and e1 = ν℘(j − 1728) or 2ν℘(j − 1728).
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Proof. Let p > 3 be a prime, assume that e1 < e, let KE be the extension of degree e of Lnr
℘

defined above, and fix a minimal model of E over KE with good supersingular reduction. Let ∆
be its discriminant, and let c4 and c6 be the usual quantities. Let λ = r(p)νK(c4) + s(p)νK(c6) +
νK(Qp(j(E))) as in Theorem 3.3. If λ ≥ e then e1 ≥ e, but we have assumed that e1 < e, and hence
e1 = λ. Let us write e′ = e/e(℘|p). In this case, νK(Qp(j(E))) = e′ · ν℘(Qp(j(E))) is a multiple of
e′. Under our assumptions

e1 = r(p)νK(c4) + s(p)νK(c6) + νK(Qp(j))(1)
= e′ · (r(p)ν℘(c4) + s(p)ν℘(c6) + ν℘(Qp(j))).

Since νK(∆) = 0 and p 6= 2, 3, the equality 1728∆ = c34−c26 implies that νK(c4) and νK(c6) cannot
be simultaneously positive. We note that c34/∆ = j and c26 = ∆ · (j − 1728). Since νK(∆) = 0, it
follows that νK(c4) = νK(j)/3 and νK(c6) = νK(j − 1728)/2. Since c4, c6 ∈ L, it follows that
νK(c4) = 0 (resp. νK(c6) = 0) if and only if ν℘(j) = 0 (resp. ν℘(c6) = 0), if and only if j 6≡ 0 mod ℘
(resp. j − 1728 6≡ 0 mod ℘).

• If νK(c4) = νK(c6) = 0, then e1 = e′ · ν℘(Qp(j)).
• If νK(c4) > 0 and νK(c6) = 0, then νK(j(E)) = νK(c34/∆) = 3νK(c4) > 0. Since j(E) ∈ L, it
follows that j(E) ≡ 0 mod ℘. In particular, νK(j) = e′ · ν℘(j) is a multiple of e/e(℘|p) = e′,
say νK(j) = e′ · ν℘(j). Theorem 3.3 and Corollary 4.1 say that

e1 = r(p)νK(c4) + s(p)νK(c6) + νK(Qp(j)) = e′ ·
(
r(p)

ν℘(j)

3

)
.

Thus, we must have r(p) = 1 (in particular, p ≡ 5 mod 6 in this case) and e1 = νK(c4),
otherwise 0 = e1 ≥ 1, a contradiction. Hence,

e1 = νK(c4) =
νK(j)

3
=
e′ · ν℘(j)

3
.

Since e1 < e by assumption, it follows that 1 ≤ ν℘(j) < 3e(℘|p). In addition, e1 is a positive
integer, so e′ν℘(j) ≡ 0 mod 3. If ν℘(j) is not a multiple of 3, then e′ ≡ 0 mod 3. Finally,
e′ = 1, 2, 3, 4, or 6, so e′ = 3 or 6 in this case, and e1 = ν℘(j) or 2ν℘(j), as claimed.
• If instead we have νK(c4) = 0 and νK(c6) > 0, Theorem 3.3 and Corollary 4.1 now say that
e1 = νK(c6) (we must have p ≡ 3 mod 4 in this case). It follows that j ≡ 1728 mod ℘ and
νK(j− 1728) = e′h where h = ν℘(j− 1728) ≥ 1. Since e1 < e, we have h < 2e(℘|p). Since e1
is an integer, and if h is odd, then e′ ≡ 0 mod 2. Thus, e′ = 2, 4, or 6, and therefore, e1 = h,
2h, or 3h. However, we shall show next that j ≡ 1728 mod ℘ and e′ = 6 is not possible.
Thus, e1 = h, or 2h, and the proof of the corollary would be finished.

Indeed, suppose j ≡ 1728 mod ℘ and e′ = 6. Let ∆L, c4,L and c6,L be the discriminant
and the usual constants associated to the original model of E over L. By the work of Néron
on minimal models (Theorem 2.3), the degree e′ = 6 occurs if and only if ν℘(∆L) ≡ 2 or
10 mod 12. Since ∆L · j(E) = (c4,L)3, and j ≡ 1728 mod ℘, with p > 3, it follows that

ν℘(∆L) = 3ν℘(c4,L)

and therefore ν℘(∆L) ≡ 0 mod 3, and we cannot have ν℘(∆L) ≡ 2 or 10 mod 12. This is
a contradiction, and therefore e′ = 6 and j ≡ 1728 mod ℘ are incompatible. This ends the
proof of the corollary.

�
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Corollary 4.3. With notation as in Corollary 4.2, if e1 < e, and p > max{3e(℘|p) − 1, 3}, then
pe/(p+ 1) > e1.

Proof. Suppose e1 < e. According to Cor. 4.2, the biggest possible value of e1 is (3e(℘|p) −
1)e/3e(℘|p). Since the function k(x− 1)/x is increasing for any k > 0 and any x > 1, it follows that
if p+ 1 > 3e(℘|p), then

e1 ≤
(3e(℘|p)− 1)e

3e(℘|p)
<

pe

p+ 1
.

�

Example 4.4. Here we illustrate the last three results with the curve E/Q with label “121c2”.
The discriminant of the chosen model for E/Q is ∆Q = −118, we have j(E) = −11 · 1313 and
j(E)− 1728 = −49732.

Since ν11(j) = 1, Lemma 4.1 implies that ν11(Q11(j)) = 0. Indeed, we know that Q11(j) is
constant, equal to 29160 = 23 · 36 · 5, so its 11-adic valuation is zero.

Moreover, ν11(j) = 1 > 0 so Corollary 4.2 says that e1 = e · ν℘(j)/3e(℘|p) = (3 · 1)/3 = 1, as we
had already computed in Example 2.6.

Finally, we have pe/(p+ 1) = 33/12 > 1 = e1, in agreement with Corollary 4.3.

The next three results concern not only e and e1, but also the values of e− pue1, for every u ≥ 0
such that e − pue1 ≥ 1. As we shall see later (Lemma 5.3 and Prop. 5.6), these values are closely
related to the constants c(E/L,R, ℘) of Theorem 1.2 in the introduction.

Corollary 4.5. Let η ≥ 1 be a fixed positive integer. Let L be a number field, and let ℘ be a prime
ideal of OL lying above a prime p, such that e(℘|p) = η. Let E/L be an elliptic curve with potential
good supersingular reduction at ℘. Then, there is a constant f(η, p), which depends only on η when
p > 3 (and does not on ℘, L, or E), such that e is a divisor of f(η, p), and if e1 < e, then the
quantities e1, and e − pue1, for every u ≥ 0 such that e − pue1 ≥ 1, are also divisors of f(η, p).
Moreover,

(1) For any p, the constant f(η, p) is a divisor of F (η) = lcm({n : 1 ≤ n < 24η, gcd(n, 6) 6= 1}).
(2) The constant f(η, 2) is a divisor of F (η, 2) = lcm({2n : 1 ≤ n < 12η}).
(3) The constant f(η, 3) is a divisor of F (η, 3) = lcm({2n : 1 ≤ n < 6η}).
(4) If p > 3, the constant f(η, p) is a divisor of F0(η) = lcm({n : 1 ≤ n < 6η, gcd(n, 6) 6= 1}).
(5) If η = 1 and p > 3, then e divides 4 or 6, and e1 and e− e1 are divisors of 4.

Proof. Let η ≥ 1, L, ℘, e(℘|p) = η, and E/L be as in the statement. We shall write e′ = e/e(℘|p).
Notice that, as defined, the quantities F0(η), F (η, 2), and F (η, 3), are divisors of F (η), so to show
(1) through (4) it suffices to show that f(η, p) divides F (η, p) for p = 2, 3, and f(η, p) divides F0(η)
for p > 3.

By our discussion at the beginning of Section 2, we have e = e′η, where e′ is a divisor of 24, 12,
or 6 according to whether p = 2, 3, or > 3, respectively. Thus, e is clearly a divisor of F (η, p), for
all p = 2 or 3, and a divisor of F0(η) for p > 3.

Let us assume from now on that e1 < e. If p = 2, then Theorem 3.3 says that e1 = e′ · t/12, and
we must have 1 ≤ t < 12η to satisfy e1 < e. Since p = 2, the number e′ is a divisor of 24. Hence, e1
is a divisor of 2t, with 1 ≤ t < 12η, and e − pue1 = e′(η − put/12) ≥ 1 is a divisor of 2(12η − put).
It follows that both e1 and e− pue1 are divisors of F (η, 2) = lcm({2n : 1 ≤ n < 12η}). The number
e is a divisor of 24η. Since 24η = lcm(8η, 3η), then e divides F (η, 2).
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If p = 3, then Theorem 3.3 says that e1 = e′ · t/6, and we must have 1 ≤ t < 12η. Since
p = 3, the number e′ is a divisor of 12. Hence, e1 is a divisor of 2t, with 1 ≤ t < 12η, and
e− pue1 = e′(η− put/6) is a divisor of 2(12η− put). It follows that both e1 and e− pue1 are divisors
of F (η, 3) = lcm({2n : 1 ≤ n < 12η}). The number e is a divisor of 12η. Since 12η = lcm(4η, 3η),
then e divides F (η, 3).

Now assume that p > 3. It follows that e′ is 1, 2, 3, 4, or 6. In particular, e′ is a divisor of 4 or 6.
By Corollary 4.2, we have e1 = e′ · r with 1 ≤ r < η, or e1 = e′ · s/3 with e1 ∈ Z and 1 ≤ s < 3η, or
e1 = e′ · t/2 with e1 ∈ Z and 1 ≤ t < 2η. In particular, e1 is a divisor of a number in the set

{4α : 1 ≤ α < η} ∪ {2β : 1 ≤ β < 3η} ∪ {2γ : 1 ≤ γ < 2η} ∪ {3δ : 1 ≤ δ < 2η}.

Note that {4α : 1 ≤ α < η} ⊆ {2β : 1 ≤ β < 3η}, and so the number e1 is a divisor of a number in
the set

{2β : 1 ≤ β < 3η} ∪ {3δ : 1 ≤ δ < 2η} = {n : 1 ≤ n < 6η, gcd(n, 6) 6= 1}.
Similarly, e − pue1 = e′(η − pur) with 1 ≤ pur < η, or e − pue1 = e′(η − pus/3) with e1 ∈ Z and
1 ≤ pus < 3η, or e1 = e′(η − put/2) with e1 ∈ Z and 1 ≤ put < 2η. Hence, e− pue1 is a divisor of a
number in the set

{4(η − λ) : 1 ≤ λ < η} ∪ {2(3η − µ) : 1 ≤ µ < 3η} ∪ {2(2η − ψ) : 1 ≤ ψ < 2η} ∪ {3(2η − ρ) : 1 ≤ ρ < 2η}
= {4α : α < η} ∪ {2β : β < 3η} ∪ {2γ : γ < 2η} ∪ {3δ : δ < 2η}.

Therefore, e− pue1 also is a divisor of a number in {n : 1 ≤ n < 6η, gcd(n, 6) 6= 1}. Hence, both e1
and e − pue1 are divisors of lcm({n : 1 ≤ n < 6η, gcd(n, 6) 6= 1}). The number e is a divisor of 4η
or 6η. Since 4η divides F0(η) and 6η = lcm(2η, 3η), then e divides F0(η).

If η = 1 and 1 ≤ e1 < e, then e1 = e′ · ν℘(Qp(j)) is impossible. Thus, by Corollary 4.2, either
• e1 = e · ν℘(j)/3 with 1 ≤ ν℘(j) < 3. In this case ν℘(j) = 1 or 2, so e = 3 or 6, and therefore
e1 = 1, 2, or 4. Note that e1 = 4 can only happen if e = 6, and if e = 6, then e1 = 2 or 4.
Since p ≥ 5, pe1 > e, and we only need to consider e, e1, and e−e1. In particular, e−e1 = 1,
2, or 4; or
• e1 = e · ν℘(j − 1728)/2 with 1 ≤ ν℘(j − 1728) < 2. In this case ν℘(j − 1728) = 1, so e = 2
or 4, and therefore e1 = 1, or 2, respectively. Since p ≥ 5, pe1 > e, and we only need to
consider e, e1, and e− e1. Thus, e− e1 = 1, or 2, respectively.

Hence, in all cases e divides 4 or 6, and e1 and e− e1 are divisors of 4. �

Example 4.6. In previous examples we calculated e = 12 and e1 = 2 for the elliptic curve E/Q
with label “27a4”. Let us calculate F (1, 3). By definition

F (1, 3) = lcm({2n : 1 ≤ n < 6}) = lcm(2, 4, 6, 8, 10) = 8 · 3 · 5 = 120.

Thus, e = 12, e1 = 2, and e− e1 = 10, and e− 3e1 = 6 are divisors of F (1, 3) = 120, as predicted by
Corollary 4.5.

Example 4.7. Let η ≥ 1, and put F0(η) = lcm({n : 1 ≤ n < 6η, gcd(n, 6) 6= 1}). In this example
we list a few values of F0(η):

F0(1) F0(2) F0(3) F0(4) F0(5) F0(6)

22 · 3 23 · 32 · 5 24 · 32 · 5 · 7 24 · 32 · 5 · 7 · 11 24 · 33 · 5 · 7 · 11 · 13 25 · 33 · 5 · 7 · 11 · 13 · 17
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Corollary 4.8. With notation as in Cor. 4.2, if p > 3e(℘|p), then e, e1, and e− pue1 ≥ 1 are not
divisible by p.

Proof. Since p > 3, Theorem 2.3 says that e′ = e/e(℘|p) is a divisor of 12. Hence, if p > 3e(℘|p),
then e = e′ · e(℘|p) is relatively prime to p. By Cor. 4.5, there is a constant f(η) with η = e(℘|p)
such that e, e1 and e − pue1 are divisors of f(η), for all u ≥ 0 such that 1 ≤ e − pue1. Moreover,
f(η) can be chosen to be

F (η) = lcm({n : 1 ≤ n < 6η, gcd(n, 6) 6= 1}) = lcm({2β : 1 ≤ β < 3η} ∪ {3δ : 1 ≤ δ < 2η}).
Since p > 3η, there is no β < 3η or δ < 2η such that p is a divisor of 2β or 3δ. Thus, f(η) is not
divisible by p, and it follows that neither e, e1 nor e− pue1 is divisible by p. �

Example 4.9. Let E be the curve with label “121c2”. We have previously calculated e = 3 and
e1 = 1. The values e = 3, e1 = 1 and e − e1 = 2 are divisors of F0(1) = 12, as stated in Cor. 4.5,
and none of them are divisible by 11, as it follows from Cor. 4.8.

We finish this section with two lemmas about quadratic twists of elliptic curves that we will need
later on.

Lemma 4.10. Let E/L be an elliptic curve with potential good reduction at a prime ℘ lying above
a prime p ≥ 3, and let E′/L be a quadratic twist of E. Let F/L be the quadratic extension such that
E ∼=F E′. Let K = KE (resp. K ′ = KE′) be the smallest extension of Lnr

℘ such that E/K (resp.
E′/K ′) has good reduction. Let π and π′ be uniformizers for K and K ′ respectively, and let ν = νK
and ν ′ = νK′ be normalized valuations such that ν(π) = ν ′(π′) = 1. Let e = ν(p), e′ = ν ′(p) and
suppose that e ≤ e′. Then:

(1) Either K = K ′ or K ′ = FK.
(2) Suppose E has potential supersingular reduction. Let e1 and e′1 be the valuation of the coeffi-

cient of Xp in the power series [p](X) for the formal groups Ê and Ê′ respectively, as defined
above, and assume that e1 < e. Then,

e′ = µe, and e′1 = µe1,

where µ = [K ′ : K] = 1 or 2.

Proof. Since E and E′ are isomorphic over F , it follows that they are also isomorphic over FK. Since
E has good reduction over K, it also has good reduction over FK (see [12], VII, Proposition 5.4,
part (b)). Thus, E′ has good reduction over FK as well. By the properties of K ′ (see our comments
at the beginning of Section 2) we know that K ′ ⊆ FK. Similarly, K ⊆ FK ′. In particular,
FKK ′ = FK = FK ′.

Suppose that K 6= K ′ and e < e′. Notice that

K ( KK ′ ⊆ FKK ′ = FK.

Thus, KK ′/K is quadratic, and so is K ′/K ∩K ′. It follows that K ′/K ∩K ′ is a non-trivial (tamely)
ramified quadratic extension of K ∩K ′ and, since p ≥ 3 and Lnr

℘ ⊆ K ∩K ′, there is a unique such
extension of K ∩ K ′. Since we have assumed that K 6= K ′, it follows that K/K ∩ K ′ is trivial,
K ⊆ K ′, and K ′/K = K ′/K ∩K ′ is quadratic. Since K ( K ′ ⊆ KK ′ ⊆ FK, and FK/K is at most
quadratic, it follows that K ′ = FK, as desired. This proves (1).

For (2), let H = FK = FK ′, and assume that e ≤ e′, as before. By part (1), either K = K ′ and
e = e′, or K ′ = FK is quadratic over K and e′ = 2e. Thus, e′ = µ · e with µ = [K ′ : K]. Now, the
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formulas in Theorem 3.3 applied to E say that e1 = λ = e/e(℘|p) · C, where C = C(j(E), ℘) is a
constant that only depends on j(E) and ℘. Let us apply Theorem 3.3 to E′/A′:

λ′ = e′/e(℘|p) · C(j(E′), ℘) = µe/e(℘|p) · C(j(E), ℘) = µλ,

where we have used the fact that j(E) = j(E′) because E ∼=F E
′. Since λ = e1 < e by assumption, it

follows that λ′ = µλ < µe = e′. Hence, the theorem implies that e′1 = λ′ = µλ = µe1, as claimed. �

Lemma 4.11. Let F be a field of characteristic 0, and let E/F and E′/F be isomorphic elliptic
curves (over a fixed algebraic closure F ) with j(E) = j(E′) 6= 0 or 1728. Let φ : E → E′ be an
isomorphism. Then:

(1) E and E′ are isomorphic over F or E′ is a quadratic twist of E.
(2) For all R ∈ E(F ), we have F (x(R)) = F (x(φ(R))).

Proof. Let E and E′, respectively, be given by Weierstrass equations y2 = x3 + Ax + B and y2 =
x3 + A′x+B′, with coefficients in F . Since j(E) = j(E′) 6= 0, 1728, none of the coefficients is zero.
By [12], Ch. III, Prop. 3.1(b), the isomorphism φ : E → E′ is given by (x, y) 7→ (u2x, u3y) for some
u ∈ F \ {0}. Hence A′ = u4A and B′ = u6B, and so u2 ∈ F . Thus, either E ∼=F E′, or E′ is the
quadratic twist of E by u. This shows (1).

Let R ∈ E(F ). If E ∼=Q E′ then F (R) = F (φ(R)) and the same holds for the subfields of the
x-coordinates, so (2) is immediate. Let us assume for the rest of the proof that E′ is the quadratic
twist of E by

√
d, for some d ∈ F \ F 2. It follows that φ((x, y)) = (dx, d

√
d · y) and, therefore,

F (x(φ(R))) = F (d · x(R)) = F (x(R)). This proves (2). �

5. Formal groups and the valuation of torsion points

In this section we apply our previous results about the formal group of an elliptic curve with
potential supersingular reduction to calculate the slopes in the Newton polygon of the multiplication-
by-p map. In turn, the slopes will allow us to calculate the valuation of pn-th torsion points in the
formal group, and the ramification index in the extensions generated by these points.

Lemma 5.1. Let E, K and ν be as above, so that E/K is an elliptic curve given by a minimal model
with good supersingular reduction. Put [p](X) =

∑∞
i=1 siX

i and let e = ν(s1) = ν(p) and e1 = ν(sp).
Let T1 ∈ E(K)[p] be a non-trivial p-torsion point, fix any sequence {Tn ∈ E[pn] : [p]Tn+1 = Tn},
and let tn be the corresponding torsion points in Ê(M), where M is the maximal ideal in the ring
of integers of K.

(i) ν(tn+1) < ν(tn);
(ii) If ν(tn) < ep

p−1 , then ν(tn+1) <
ν(tn)
p ;

(iii) If ν(tm) < min{e, e1} for some m ≥ 1, then for all n ≥ m we have

ν(tn) =
ν(tm)

p2(n−m)
.

In particular, the ramification index of K(Tn+1)/K(Tn) is p2 for all n ≥ m.

Proof. The theory of formal groups (see [12], VII, Proposition 2.2) shows that there is an isomorphism
t : E1(K) ∼= Ê(M), where Ê is the formal group associated to E. The isomorphism is given by
(x, y) 7→ t((x, y)) = −x/y. Since we are assuming that E/K has good supersingular reduction, all
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torsion points with p-power order live in the kernel of reduction E1(K). Thus, Tn ∈ E(K)[pn] ⊂ E1,
for n = 1, 2, . . ., and we define tn = t(Tn).

Since E/K is good supersingular, the height of Ê as a formal group is 2. As above, there are
power series f(X), g(X) and h(X) in X ·A[[X]], with f ′(0) = g′(0) = h′(0) ∈ A×, such that:

[p](X) = pf(X) + πe1g(Xp) + h(Xp2).

It follows that

ν(tn) = ν([p](tn+1)) ≥ min{ν(pf(tn+1)), ν(πe1g(tpn+1)), ν(h(tp
2

n+1))}(2)

= min{e+ ν(tn+1), e1 + pν(tn+1), p
2ν(tn+1)} > ν(tn+1).

It follows that ν(tn+1) < ν(tn) as claimed in (i). Assume that ν(tn) < ep/(p − 1) or, equivalently,
e + ν(tn)/p > ν(tn). For a contradiction, suppose that ν(tn+1) ≥ ν(tn)/p. By Eq. (2), this would
imply ν(tn) ≥ min{e+ ν(tn)/p, e1 + ν(tn), pν(tn)} > ν(tn), a contradiction. This proves (ii).

We will prove (iii) using induction. Clearly, the base case n = m is trivial. Now, suppose the
equality is valid for some n > m, i.e., ν(tn) = ν(tm)/p2(n−m). In particular, ν(tn) < ν(tm) <
min{e, e1}. Hence, the only possibility in Eq. (2) is that the minimum is attained with p2ν(tn+1),
and since this value is smaller than the other two, all inequalities are actually equalities. Thus,
ν(tn) = p2ν(tn+1). Hence,

ν(tn+1) =
ν(tn)

p2
=

ν(tm)

p2(n−m)+2
=

ν(tm)

p2(n+1−m)
.

Thus, by the principle of mathematical induction, the equality is valid for all n ≥ m. �

Lemma 5.2. Let E/L be an elliptic curve with potential good supersingular reduction at a prime ℘.
Let KE/L

nr
℘ , A, π, e, and e1 be as above, so that [p](X) = pf(X) +πe1g(Xp) +h(Xp2), where f(X),

g(X) and h(X) are power series in X ·A[[X]], with f ′(0) = g′(0) = h′(0) ∈ A×. Then:
(1) If pe/(p+ 1) ≤ e1, then [p](X) = 0 has p2 − 1 roots of valuation e

p2−1 ;
(2) If pe/(p+ 1) > e1, then [p](X) = 0 has p− 1 roots with valuation e−e1

p−1 and p2 − p roots with
valuation e1

p(p−1) .

Proof. This is shown in [10], §1.10 (pp. 271-272). Let N be the part of the Newton polygon of [p](Z)
that describes the roots of valuation > 0. Let P0 = (1, e), P1 = (p, e1), and P2 = (p2, 0). The slope
of the segment P0P1 is −(e − e1)/(p − 1), while the slope of the segment P0P2 is −e/(p2 − 1). It
follows from the theory of Newton polygons (see [10], p. 272) that:

(1) If pe/(p + 1) ≤ e1, then N is given by a single segment P0P2 of length p2 − 1. Thus, there
are p2 − 1 roots of valuation e

p2−1 .
(2) Otherwise, if pe/(p + 1) > e1, then N is given by two segments P0P1 and P1P2 of length

p− 1 and p2 − p, respectively. It follows that there are p− 1 roots with valuation e−e1
p−1 and

p2 − p roots with valuation e1
p(p−1) .

�

We say that t is a primitive root of [pn](X) = 0 if [pn](t) = 0 but [pm](t) 6= 0 for any 0 ≤ m < n.

Lemma 5.3. With notation as in Lemma 5.2, let n ≥ 1 be fixed.
(1) If pe/(p+ 1) ≤ e1, then every primitive root of [pn](X) = 0 has valuation e

p2(n−1)(p2−1) ;
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(2) If pe/(p + 1) > e1, then [pn](X) = 0 has (p2 − p)p2(n−1) primitive roots with valuation
e1

(p−1)p2n−1 . Moreover, let s be the smallest non-negative integer such that e/e1 ≤ ps(p + 1).
Then,
(a) if n ≤ s+ 1, there are (p− 1)p2(n−1) primitive roots of valuation e−pn−1e1

(p−1)pn−1 ;

(b) if n > s+ 1, there are (p− 1)p2(n−1) primitive roots of valuation e−pse1
(p−1)p2(n−1)−s .

Proof. Let tn be a primitive root of [pn](X) = 0. Then, t1 = [pn−1](X) is a non-zero root of
[p](X) = 0. By Lemma 5.2 there are three options according to the valuation of t1.

(1) If pe/(p+ 1) ≤ e1, then the valuation of t1 ∈ Ê[p] is e/(p2 − 1). Thus,

ν(t1) =
e

p2 − 1
< p(p− 1)

e

p2 − 1
=

pe

p+ 1
≤ min{e, e1}.

Hence, by Lemma 5.1,

ν(tn) =
ν(t1)

p2(n−1)
=

e

p2(n−1)(p2 − 1)
.

(2) If pe/(p+ 1) > e1, then the valuation of t1 is e1/p(p− 1) or (e− e1)/(p− 1). Notice that in
this case e > pe/(p+ 1) > e1. If ν(t1) = e1/p(p− 1) ≤ min{e, e1}, then by Lemma 5.1,

ν(tn) =
ν(t1)

p2(n−1)
=

e1

p2(n−1)+1(p− 1)
=

e1
p2n−1(p− 1)

.

For the rest of the proof, let us assume that ν(t1) = (e− e1)/(p−1). We note that ν(t1) < e.
Let us write tm = [pn−m](tn). In the proof of Lemma 5.1 we saw that

ν(tm) ≥ min{e+ ν(tm+1), e1 + pν(tm+1), p
2ν(tm+1)} > ν(tm+1),

for any 1 ≤ m < n. Since ν(tm) > ν(tm+1) for all m, and ν(t1) < e, it follows that the
minimum cannot be e+ ν(tm+1) for any m ≥ 1. Thus,

ν(tm) ≥ min{e1 + pν(tm+1), p
2ν(tm+1)},

and the inequality is an equality, unless e1+pν(tm+1) = p2ν(tm+1), i.e., ν(tm+1) = e1/(p
2−p).

Thus, there are three options,

ν(tm+1) =
ν(tm)− e1

p
, or

ν(tm)

p2
, or

e1
p2 − p

,

according to whether the minimum is attained at e1 + pν(tm+1), at p2ν(tm+1), or at e1 +
pν(tm+1) = p2ν(tm+1), respectively. The first option happens when ν(tm+1) > e1/(p

2 − p),
and the second option when ν(tm+1) < e1/(p

2 − p). Equivalently, ν(tm+1) = (ν(tm)− e1)/p
if ν(tm) > pe1/(p− 1), and ν(tm+1) = ν(tm)/p2 if ν(tm) ≤ pe1/(p− 1). Let s be the smallest
non-negative integer such that e/e1 ≤ ps(p+ 1).
(a) We shall prove by induction that ν(tn) = e−pn−1e1

(p−1)pn−1 for all 1 ≤ n ≤ s+ 1. The base case
of n = 1 follows from our assumtion that ν(t1) = (e − e1)/(p − 1). Now suppose that
1 ≤ n < s+ 1, and ν(tn) = e−pn−1e1

(p−1)pn−1 . Since n− 1 < s, it follows that e > pn−1(p+ 1)e1.
Thus,

ν(tn) =
e− pn−1e1
(p− 1)pn−1

>
pn−1(p+ 1)e1 − pn−1e1

(p− 1)pn−1
=

pn−1pe1
(p− 1)pn−1

=
pe1
p− 1

.
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By our previous remarks, this inequality implies that

ν(tn+1) =
ν(tn)− e1

p
=

e−pn−1e1
(p−1)pn−1 − e1

p
=

e− pne1
(p− 1)pn

.

Thus, by the principle of mathematical induction, the result follows for all 1 ≤ n ≤ s+1.
(b) Here we shall show by induction that ν(tn) = e−pse1

(p−1)p2(n−1)−s for all n ≥ s + 1. The

previous case shows that ν(ts+1) = e−pse1
(p−1)ps . Since e ≤ p

s(p+ 1)e1, it follows that

ν(ts+1) =
e− pse1
(p− 1)ps

≤ ps(p+ 1)e1 − pse1
(p− 1)ps

=
pspe1

(p− 1)ps
=

pe1
p− 1

.

By our previous remarks, this inequality implies that

ν(ts+2) =
ν(ts+1)

p2
=

e− pse1
(p− 1)ps+2

=
e− pse1

(p− 1)p2(s+2−1)−s .

Now suppose that n > s+ 1 and ν(tn) = e−pse1
(p−1)p2(n−1)−s . Since n > s+ 1, it follows that

ν(tn) < ν(ts+1) ≤ pe1/(p− 1). Therefore, our previous remarks show that

ν(tn+1) =
ν(tn)

p2
=

e− pse1
(p− 1)p2(n−1)−s+2

=
e− pse1

(p− 1)p2((n+1)−1)−s ,

as desired. Hence, the principle of mathematical induction shows that

ν(tn) =
e− pse1

(p− 1)p2(n−1)−s

for all n ≥ s+ 1.
�

Example 5.4. Let E/Q be the elliptic curve with Cremona label “27a4”, given by a Weierstrass
equation y2 + y = x3 − 30x+ 63. The curve E has additive reduction at p = 3, which turns out to
be potential good supersingular reduction. In this case, the good reduction is first attained over a
number field K0 = Q(α, β), where α and β are roots of the polynomials x4− 3 and x3− 120x+ 506,
respectively. The extension K0/Q is of degree 12, totally ramified at p = 3. We define K = K0Qnr

3 .
In this particular case, we have e = 12, and we have also calculated e1 = 2.

We have calculated (using Magma) the coordinates of torsion points T1, T2 and T3 in E′, respec-
tively of order 3, 9 and 27, such that [3]T3 = T2, and [3]T2 = T1. There are two non-trivial 3-torsion
points defined over K (this follows from the fact that E has a 3-torsion point defined over Q), and
we let T1 be one of them. Let F3/Q and F9/Q be unique extensions of degrees 3 and 9 contained in
Q(ζ27)/Q. Then T2 ∈ E′(KF3) and T3 ∈ E′(KF9). If we let ti = −x(Ti)/y(Ti), we find that

ν(t1) = 5, ν(t2) = 1, and ν(t3) = 1/9.

Notice that 3 · 12/4 = 9 > 2 = e1, thus by Lemma 5.3, the formal group has 6 · 32(n−1) primitive
roots with valuation 2

2·32n−1 = 1
32n−1 . Moreover, 12/2 = 6 ≤ 3 · 4, so s = 1. Hence,

(1) if n ≤ 2, there are 2 · 32(n−1) primitive roots of valuation 12−3n−1·2
2·3n−1 ;

(2) if n > 2, there are 2 · 32(n−1) primitive roots of valuation 12−3·2
2·32(n−1)−1 = 1

32(n−1)−2 = 1
32n−4 .



RAMIFICATION AND POTENTIAL SUPERSINGULAR REDUCTION 17

In particular, there are precisely two points of 3-torsion in the formal group with valuation (e −
e1)/(p− 1) = (12− 2)/2 = 5 and t1 is one of them (the rest of the 3-torsion points, 6 of them, have
valuation 1/3). Also, there are 18 points of 9-torsion in the formal group with valuation 1, and t2
is one of them (the other 54 torsion points of order 9 have valuation 1/27). Finally, there are 162
roots of 27-torsion with valuation 1/9 and t3 is one of them (the other 486 roots of order 27 have
valuation 1/243).

Example 5.5. Let E = E121c2 defined over Q. As we know e = 3 and e1 = 1 for p = 11. Since
33/12 > 1, it follows from Lemma 5.3 that [11n](X) = 0 has 110 · 112(n−1) primitive roots with
valuation 1

10·112n−1 , for all n ≥ 1. Moreover, e/e1 = 3 ≤ 12 implies that s = 0, and so for all n ≥ 1,
there are 10 · 112(n−1) primitive roots of valuation 1

5·112(n−1) . In particular, when n = 1, there are
110 roots with valuation 1/110, and 10 roots with 1/5.

Proposition 5.6. Let E/L be an elliptic curve with potential good supersingular reduction at a prime
p. Let K be the smallest extension of Lnr

℘ such that E/K has good (supersingular) reduction at p,
and let e = ν(p) and e1 = ν(sp) be defined as above.

(1) If pe/(p + 1) ≤ e1, then the ramification index in the extension K(Tn)/K is divisible by
(p2 − 1)p2(n−1)/ gcd(e, (p2 − 1)p2(n−1)), where Tn ∈ E[pn] is an arbitrary torsion point on E
of exact order pn.

(2) If pe/(p + 1) > e1, then there are (p2 − p)p2(n−1) torsion points Tn ∈ E[pn] such that the
ramification index in K(Tn)/K is divisible by (p− 1)p2n−1/ gcd(e1, (p− 1)p2n−1). Moreover,
let s be the smallest non-negative integer such that e/e1 ≤ ps(p+ 1). Then,
(a) if n ≤ s+ 1, there are (p− 1)p2(n−1) points Tn ∈ E[pn] such that the ramification index

in K(Tn)/K is divisible by (p− 1)pn−1/ gcd(e− pn−1e1, (p− 1)pn−1);
(b) if n > s+ 1, there are (p− 1)p2(n−1) points Tn ∈ E[pn] such that the ramification index

in K(Tn)/K is divisible by (p− 1)p2(n−1)−s/ gcd(e− pse1, (p− 1)p2(n−1)−s).
In all cases, there is a number c = c(E/L, T, ℘) with 1 ≤ c ≤ e ≤ 24e(℘|p) such that if T ∈ E[pn] is
of order pn, then the ramification index in K(T )/K is divisible by ϕ(pn)/ gcd(c, ϕ(pn)).

Proof. Let Tn ∈ E[pn] be an arbitrary point on E(K) of exact order pn, and write Ti = [pn−i]Tn, for
i = 1, . . . , n. Also, write ti for the corresponding torsion point in the formal group, i.e., ti = t(Ti) =

−x(Ti)/y(Ti) ∈ Ê(M). The proposition now follows from Lemma 5.3. In the last statement, we
simply pick c = e, e1, e− pn−1e1, or e− pse1. Notice that if pe/(p+ 1) > e1, then e > e1. Thus, in
all cases, 1 ≤ c ≤ e. �

The previous proposition has the following asymptotic consequence for the growth of ramification
indices.

Corollary 5.7. Let E/L be an elliptic curve with potential good supersingular reduction at a prime
p. Let K be the smallest extension of Lnr

℘ such that E/K has good (supersingular) reduction at p.
Let {Tn ∈ E[pn]}∞n=1 be an arbitrary sequence of torsion points, such that Tn has exact order pn.
Then, there is an integer m = m(E/K) ≥ 1 such that

e(K(Tn+1)/K) = e(K(Tn)/K) · p2,

for all n ≥ m.
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Proof. The statement follows directly from Proposition 5.6, by letting

m = max{s+ 1, d(νp(e) + 2)/2e, d(νp(e− pse1) + s+ 2)/2e}

where d·e is the integer ceiling function. �

Remark 5.8. Let L be a number field with ring of integers OL, and let ℘ be a prime ideal of OL
lying above a rational prime p. Let E/L be an elliptic curve, and let R ∈ E(L)[pn] be a point of
exact order pn. Let ι : L ↪→ L℘ be a fixed embedding. Let F = L(R) and let ΩR be the prime
of F above ℘ associated to the embedding ι. Let K be a finite Galois extension of Lnr

℘ , such that
the ramification index of K over Qp is e. Let Ẽ/K be a curve isomorphic to E over K, and let
T ∈ Ẽ(K)[pn] be the point that corresponds to ι(R) on E(L℘). Suppose that the degree of the
extension K(T )/K is g. Since K/Lnr

℘ is of degree e/e(℘|p), it follows that the degree of K(T )/Lnr
℘

is eg/e(℘|p).
Let F = ι(F ) ⊆ L℘. Since E and Ẽ are isomorphic over K, it follows that K(T ) = KF and,

therefore, the degree of the extension KF/Lnr
℘ is eg/e(℘|p). Since K/Lnr

℘ is Galois by assumption,
it follows that g = [K(T ) : K] = [FLnr

℘ : K ∩ FLnr
℘ ], so the degree of [FLnr

℘ : Lnr
℘ ] equals g · k

where k = [K ∩ FLnr
℘ : Lnr

℘ ]. Hence, the degree of F/L℘ is divisible by gk and, in particular, the
ramification index of the prime ideal ΩR over ℘ in the extension L(R)/L is divisible by gk, where
g = [K(T ) : K].

Theorem 5.9. Let η ≥ 1 and n ≥ 1 be fixed. Let p be a prime, let L be a number field, and let
℘ be a prime ideal of OL lying above p, such that e(℘|p) ≤ η. Let E/L be an elliptic curve with
potential supersingular reduction at ℘, let R ∈ E[pn] be a point of exact order pn. Then, there is a
number c = c(E/L,R, ℘) with 1 ≤ c ≤ 24η (with c ≤ 12η if p > 2, and c ≤ 12η if p > 3), such
that the ramification index e(P|℘) of any prime P above ℘ in the extension L(R)/L is divisible by
ϕ(pn)/ gcd(c, ϕ(pn)). Moreover,

(1) There is a constant f(η), which depends only on η, such that c|f(η). Moreover f(η) is a
divisor of F (η) = lcm({n : 1 ≤ n < 24η, gcd(n, 6) 6= 1}). If p > 3, then f(η) is a divisor of
F0(η) = lcm({n : 1 ≤ n < 6η, gcd(n, 6) 6= 1}).

(2) Let σ be the smallest non-negative integer such that 8η ≤ 2σ (or such that η ≤ 5σ, if p > 3).
If n > σ + 1, then e(P|℘) is divisible by (p− 1)p2(n−1)−σ/ gcd((p− 1)p2(n−1)−σ, c).

(3) If p > 3η, then e(P|℘) is divisible by (p− 1)pn−1/ gcd(p− 1, c).
(4) If η = 1 and p > 3, then e(P|℘) is divisible by (p2−1)p2(n−1)/6, or (p−1)p2(n−1)/ gcd(p−1, 4).

If η = 1 and p = 3, then e(P|℘) is divisible by ϕ(3n)/ gcd(ϕ(3n), t) with t = 6 or 9.

Proof. Since F (η) is a divisor of F (η′) (respectively, F (η) is a divisor of F0(η
′)) whenever η ≤ η′, it

suffices to show the theorem when e(℘|p) = η. By Proposition 5.6 and Remark 5.8 it follows that
e(P|℘) is divisible by one of the following quantities:

(p2 − 1)p2(n−1)

gcd((p2 − 1)p2(n−1), e)
, or

(p− 1)p2n−1

gcd((p− 1)p2n−1, e1)
,

or
(p− 1)pn−1

gcd((p− 1)pn−1, e− pn−1e1)
if n ≤ s+ 1,

or
(p− 1)p2(n−1)−s

gcd((p− 1)p2(n−1)−s, e− pse1)
if n > s+ 1,
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where s is the smallest non-negative integer such that e/e1 ≤ ps(p + 1), so we define c = e, e1,
e − pn−1e1, or e − pse1 accordingly, and it follows that 1 ≤ c ≤ e, so the bounds on c follow from
the discussion on the possible values of e at the beginning of Section 2. Hence, in all cases e(P|℘) is
divisible by (p− 1)pn−1/ gcd((p− 1)pn−1, c).

By Corollary 4.5, there is a constant f(η, p) such that e, e1, e− pn−1e1, and e− pse1 are divisors
of f(η, p), so c|f(η, p) as well. Moreover, f(η, p) divides F (η), and f(η, p) divides F0(η) for p > 3.
Hence, in all cases e(P|℘) is divisible by ϕ(pn)/ gcd(ϕ(pn), F (η)). This shows (1).

Let σ be the smallest non-negative integer such that 8η ≤ 2σ (or such that η ≤ 5σ, if p > 3).
Since e = e/e(℘|p) · e(℘|p), and e′ = e/e(℘|p) is ≤ 24 (resp. ≤ 6, if p > 3), then

e/e1 ≤ 24η ≤ 3 · 2σ ≤ pσ(p+ 1)

(resp. e/e1 ≤ 12η ≤ 6 · 5σ ≤ pσ(p + 1) if p ≥ 5). Since s is smallest such that ps(p + 1) ≥ e/e1, it
follows that s ≤ σ. Hence, if n > σ + 1, then n > s+ 1 and e(P|℘) is divisible by one of

(p2 − 1)p2(n−1)

gcd((p2 − 1)p2(n−1), c)
, or

(p− 1)p2n−1

gcd((p− 1)p2n−1, c)
, or

(p− 1)p2(n−1)−s

gcd((p− 1)p2(n−1)−s, c)
,

or with c replaced by F (η). Hence, in all cases e(P|℘) is divisible by the quantity

(p− 1)p2(n−1)−s/ gcd((p− 1)p2(n−1)−s, c).

This shows (2).
By Corollary 4.8, if p > 3η ≥ 3e(℘|p), then e, e1, e − pn−1e1, and e − pse1 are not divisible

by p. It follows that e(P|℘) is divisible by (p − 1)pn−1/ gcd(p − 1, c), and it is divisible by (p −
1)p2(n−1)−s/ gcd(p− 1, c) if n > σ + 1, and with c replaced by F (η). This shows (3).

If η = e(℘|p) ≤ 1 and p > 3, Corollary 4.5 says that e divides 4 or 6, and e1, e− e1, are divisors
of 4 (note that e/e1 ≤ p+ 1 for all p > 3, so s = 0). Hence, e(P|℘) is divisible by one of

(p2 − 1)p2(n−1)

gcd(p2 − 1, 6)
, or

(p2 − 1)p2(n−1)

gcd(p2 − 1, 4)
, or

(p− 1)p2n−1

gcd(p− 1, 4)
, or

(p− 1)p2(n−1)

gcd(p− 1, 4)
.

It follows that e(P|℘) is divisible by (p2 − 1)p2(n−1)/6 or (p− 1)p2(n−1)/ gcd(p− 1, 4). If d = 1 and
p = 3, then e(P|℘) is divisible by ϕ(3n)/ gcd(ϕ(3n), c) where 1 ≤ c ≤ 12. Since ϕ(3n) = 2 · 3n−1, it
is also divisible by ϕ(3n)/ gcd(ϕ(3n), t) with t = 6 or 9. This shows (4) and concludes the proof of
the theorem. �

Example 5.10. Let E/Q be the elliptic curve with Cremona label “27a4”, given by a Weierstrass
equation y2 +y = x3−30x+63. We have seen in Example 5.4 that for this curve and p = 3, we have
e = 12 and e1 = 2. In particular pe/(p+ 1) = 3 · 12/4 = 9 > 2 and Proposition 5.6 implies that, for
all n ≥ 1, there are 6 · 32n−2 points Tn in E(Q3)[3

n] such that the ramification index in K(Tn)/K is
divisible by 2 · 32n−1/(gcd(32n−1 · 2, 2)) = 32n−1.

Let Ti ∈ E[3i] for i = 1, 2, 3 be the torsion points defined in Example 5.4. We also defined
ti = −x(Ti)/y(Ti), and we found that ν(t1) = 5, ν(t2) = 1, and ν(t3) = 1/9. Since ν(t3) <
min{12, 2} = 2, Lemma 5.1 implies that for all n ≥ 3, and all Tn ∈ E[3n] such that [3n−3](Tn) = T3
we have ν(tn) = ν(t3)

32(n−3) = 1
32n−4 . Thus, the ramification index of K(Tn)/K is divisible by 32n−4,

when n ≥ 3.
In all cases, we find that, if Tn is any point of exact order 3n and n ≥ 3, then the ramification

index of K(Tn)/K is divisible either 32n−1 or by 32n−4, so it is divisible by, at least, 32n−4. Thus,
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Remark 5.8 implies that if R ∈ E(Q) is a point of exact order 3n with n ≥ 3, then the ramification
index of any prime lying above 3 in the extension Q(R)/Q is divisible by 32n−4.

Example 5.11. Let E = E121c2 defined over Q. As we know e = 3 and e1 = 1 for p = 11. Since
33/12 > 1, by Prop. 5.6, there are 110·112(n−1) torsion points Tn ∈ E[pn] such that c(E/Q, Tn, 11) =
e1 = 1 and, therefore, the ramification index in Q(Tn)/Q is divisible by 10 ·112n−1. Moreover, e/e1 =

3 ≤ 12, so s = 0, and there are 10 ·112(n−1) points Tn ∈ E[pn] such that c(E/Q, Tn, 11) = e− e1 = 2,
and the ramification index in Q(Tn)/Q is divisible by 5 · 112(n−1) for all n ≥ 1. In particular, if Tn is
any point of order 11n, then the ramification index at 11 in Q(Tn)/Q is divisible by 5 · 112(n−1) for
all n ≥ 1.

Let F = Q(ζ11) be the 11th cyclotomic field, and let ζ = ζ11 be a primitive 11th root of unity.
Then, E has a point of exact order 11 defined over F , namely

T1 = (− 22ζ9 − 11ζ7 − 11ζ6 − 11ζ5 − 11ζ4 − 22ζ2 + 17,

− 77ζ9 − 33ζ8 − 132ζ7 − 33ζ6 − 33ζ5 − 132ζ4 − 33ζ3 − 77ζ2 − 201).

Moreover, notice that both x(T1) and y(T1) are fixed by complex conjugation and, therefore, T1
is defined over F+ = Q(ζ11)

+, the maximal real subfield of F . Moreover, one can verify that
Q(T1) = F+. Thus, the ramification index of 11 in Q(T1)/Q is 5, which is the smallest it can be,
since it must be divisible by 5 · 112(n−1) with n = 1.

We finish this section with a result on the behavior of ramification under quadratic twists.

Proposition 5.12. Let E/L be an elliptic curve with potential supersingular reduction at a prime
ideal ℘ above p ≥ 3, and let Tn ∈ E[pn] be a point of exact order pn. Let K be the smallest extension
of Lnr

℘ such that E/K has good reduction, let ν be a normalized valuation on K, and let e = ν(p) and
e1 = ν(sp) defined as usual. Let E′/L be a quadratic twist of E, such that E and E are isomorphic
over a quadratic extension F/L, and let K ′, ν ′, e′, and e′1 be the analogous items attached to E′.

(1) If F/L is unramified at ℘, then e = e′ and e1 = e′1, and the results of Proposition 5.6 apply
equally to E or E′.

(2) Otherwise, assume that F/L is ramified at ℘. If K/Lnr
℘ contains a quadratic ramified ex-

tension, then e = e′ and e1 = e′1, and the results of Proposition 5.6 apply equally to E or
E′.

(3) Finally, assume that F/L is ramified at ℘, and assume further that L(x(Tn)) contains a
quadratic extension H/L ramified at ℘. Let T ′n ∈ E′[pn] be the point on E′ that corresponds
to Tn on E[pn]. Then, L(Tn)/L and L(T ′n)/L have the same ramification properties for
primes that lie above ℘.

Proof. Part (1) is clear, since FK = K. For part (2), letK0/L
nr
℘ be the quadratic extension contained

in K/Lnr
℘ . Then FLnr

℘ = K0. Thus, FK = K and, by Lemma 4.10, we have K = K ′, and the result
follows. Finally, for (3), we have L(x(Tn)) = L(x(T ′n)) by Lemma 4.11. Let us fix an embedding
ι : L ↪→ L℘ and put Fn = ι(L(Tn)) and F ′n = ι(L(T ′n)). Since p ≥ 3, it follows that FLnr

℘ = HLnr
℘ ,

therefore FLnr
℘ ⊆ Fn, and FLnr

℘ ⊆ F ′n. Since E ∼=F E
′, it follows that

FnLnr
℘ = ι(L(Tn))FLnr

℘ = ι(L(T ′n))FLnr
℘ = F ′nLnr

℘ ,

and the result follows. �
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6. Examples from X0(p
n)

In this last section, we discuss examples of elliptic curves with potential supersingular reduction
that appear associated to non-cuspidal rational points on a modular curve X0(p

n) for some prime p
and n ≥ 1.

Let E/Q be an elliptic curve with a Q-rational cyclic isogeny φ of degree pn. Then, the pair
(E,C) with C = Ker(φ) corresponds to a Q-rational point on the modular curve X0(p

n). Conversely,
following [1], each non-cuspidal Q-rational point on X0(p

n) comes from such a pair (E/Q, 〈R〉), with
R ∈ E[pn]. The rational points on the modular curves X0(p

n) have been completely classified (see,
for example, Section 9.1 and Tables 2, 3, and 4 of [5]). Here, in Table 2, we list every non-cuspidal
Q-rational point on the modular curves X0(p

n) of genus ≥ 1, which correspond to elliptic curves
with potential supersingular reduction at the prime p (and provide the Cremona labels for curves
with the given j-invariant and least conductor). We remark here that X0(27), X0(11), X0(17), and
X0(19) have genus 1, but only contain finitely many Q-rational points.

Table 2: Elliptic curves with pot. supersingular reduction on X0(p
n) of genus ≥ 1

j-invariant p n Cremona Label(s) Good reduction over e e1

j = −215 · 3 · 53 3 3 27a2, 27a4 Q( 4
√

3, β3 − 120β + 506 = 0) 12 2

j = −11 · 1313 121c2 Q( 3
√

11) 3 1

j = −215 11 1 121b1, 121b2 Q( 4
√

11) 4 2

j = −112 121c1 Q( 3
√

11) 3 2

j = −172 · 1013/2
17 1

14450p1 Q( 3
√

17) 3 2

j = −17 · 3733/217 14450p2 Q( 3
√

17) 3 1

j = −215 · 33 19 1 361a1, 361a2 Q( 4
√

19) 4 2

j = −218 · 33 · 53 43 1 1849a1, 1849a2 Q( 4
√

43) 4 2

j = −215 · 33 · 53 · 113 67 1 4489a1, 4489a2 Q( 4
√

67) 4 2

j = −218 · 33 · 53 · 233 · 293 163 1 26569a1, 26569a2 Q( 4
√

163) 4 2

Theorem 6.1. Let (j0, p) be any of the j-invariants that are listed in Table 2, together with the
corresponding prime p of potential supersingular reduction. Let E/Q be an elliptic curve with j(E) =
j0, and let Tn ∈ E[pn] be a point of exact order pn. Then, the ramification index of any prime ℘
that lies above p in the extension Q(Tn)/Q is divisible by (p− 1)p2n−2/2 if p > 3 and n ≥ 1, and by
32n−4 if p = 3 and n ≥ 3.

Proof. With the notation of the statement of the theorem, fix a prime Ω℘ of Q that lies above ℘, and
let ι℘ : Q ↪→ Qp be the embedding associated to Ω℘. We divide the j-invariants in three subsets:

• Let j0 = −215 · 3 · 53 and p = 3. Let E/Q be the elliptic curve with Cremona label “27a4”.
Then, we have worked out in Example 5.10 that, for all n ≥ 3, the ramification index of
Q3(ι(Tn))/Q3 is divisible by 32n−4. Hence, the ramification of ℘ over p in the extension
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Q(Tn)/Q is also divisible by 32n−4. Since the smallest field extension of Qnr
3 such that E ac-

quires good reduction is given by K = Qnr
3 ( 4
√

3, β3− 120β+ 506 = 0) (see Table 2), it follows
that K/Qnr

3 contains the quadratic extension Qnr
3 (
√

3)/Qnr
3 , and therefore, by Proposition

5.12, parts (1) and (2), any quadratic twist of E/Q shares the same ramification properties
in the extension Q(Tn)/Q. Since any elliptic curve over Q with j = j(E) is a quadratic twist
of E/Q (by Lemma 4.11), we are done.

• Let j0 be one of the j-invariants with p = 11, 19, 43, 67 or 163, and let E/Q be one of the
elliptic curves with Cremona label as listed in Table 2. From the same table, we see that in all
cases e−e1 and e1 are 1 or 2. If E/Q is replaced by a quadratic twist, then Lemma 4.10 says
that the quantities (e, e1) stay the same or are replaced by (2e, 2e1), and 2e−2e1 and 2e1 are 2
or 4. (Notice that, in fact, in [4], Cor. 4.6, we have shown that if E/L has potential supersin-
gular reduction at ℘, with e(℘|p) = 1, and e1 < e, then e−e1 and e1 can only take the values
1, 2, or 4). Moreover, in all cases p ≡ 3 mod 4, so gcd(p(p−1), 4) = gcd(p(p−1), 4) = 2. Also,
in all cases it can be easily verified that pe/(p+1) > e1 and, equivalently, p(2e)/(p+1) > 2e1.
Therefore, Proposition 5.6 implies that the ramification index in the extension K(ι(Tn))/K
is divisible by (p − 1)p2n−2/2. Hence, by Remark 5.8, the ramification index of ℘ over p in
the extension Q(Tn)/Q is divisible by (p− 1)p2n−2/2 for any elliptic curve with j = j0.

• Let j0 be one of the two j-invariants with p = 17. Let E/Q be the elliptic curve with Cremona
label “14450p1”. Let Tn be a point of exact order 17n on E. We claim that Q(x(Tn)) contains
Q(
√

17). First notice that, if T1 = [pn−1]Tn ∈ E[17], then Q(x(T1)) ⊆ Q(x(Tn)) because the
function f = x ◦ [17n−1] is even, and therefore lies in the function field Q(x) (see [12], Cor.
2.3.1). The x-coordinate of T1 is a root of ψ17(x), the 17th division polynomial of E. The
division polynomial factors as ψ17(x) = s1(x)s2(x), where s1(x) and s2(x) have degrees 8 and
144 respectively. Let αi be a root of si(x), for i = 1, 2. We have verified with the software
Magma that Q(

√
17) ⊆ Q(αi) for both i = 1 and 2. Therefore, Q(

√
17) ⊆ Q(x(T1)) ⊆

Q(x(Tn)).
Similarly, if we let E′/Q be the curve with label “14450p2”, the 17th division polynomial

factors as ψ17(x) = s1(x)s2(x)s3(x) where the polynomials si have degrees 4, 4 and 136,
respectively for i = 1, 2, and 3. Let αi be a root of si(x). We have also verified with the
software Magma that Q(

√
17) ⊆ Q(αi) for both i = 1, 2, and 3. Therefore, Q(

√
17) ⊆

Q(x(T1)) ⊆ Q(x(Tn)), for any Tn ∈ E′ of order 17n.
In particular, if Tn ∈ E or E′, parts (1) and (3) of our Proposition 5.12 imply that the

ramification properties at p of Q(Tn) are invariant under quadratic twists, and therefore
it suffices to show the theorem for E and E′. From Table 2 we see that, for E we have
(e− e1, e1) = (1, 2), and for E′ we have (e− e1, e1) = (2, 1). Hence, gcd(17 · 16, e− e1) and
gcd(17 · 16, e1) are both ≤ 2. Moreover, in both cases pe/(p+ 1) > e1 for p = 17. Hence, by
Proposition 5.6 and Remark 5.8, we have that the ramification index of ℘ over (17) in the
extension Q(Tn)/Q is divisible by 16 · 172n−2/2 = 8 · 172n−2, for all n ≥ 1, as desired.

�

We conclude the paper with an example of an elliptic curve defined over a quadratic number field
L, which appears as a non-cuspidal L-point on X0(13)(L).
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Example 6.2. Let j0 be a root of the polynomial

x2 − 6896880000x− 567663552000000,

and let L = Q(j0) = Q(
√

13). Let p = 13 and let ℘ = (
√

13) be the ideal above p in OL. Let E/L be
the elliptic curve with j-invariant equal to j0. The curve E has complex multiplication by Z[

√
−13],

i.e., End(E/C) ∼= Z[
√
−13] and, in fact, all the endomorphisms are defined over Q(

√
13, i), see [13],

Chapter 2, Theorem 2.2(b)). Since 13 ramifies in L, it follows from Deuring’s criterion (see [3], Ch.
13, §4, Theorem 12) that the reduction of E at ℘ is potential supersingular. We choose a model for
E/L given by

y2 = x3 +
5231j0 − 50692880808000

3825792
x+
−550711j0 + 4485396184200000

239112
.

The discriminant of this model is ∆L = 13546495176890000j0−93429639900045292464000000
29889 and ν℘(∆L) = 0.

Hence, E/L has good supersingular reduction at ℘. In particular KE = Lnr
℘ and e = 2. Since

p = 13 ≡ 1 mod 12, we have r(13) = s(13) = 0, and we may use Theorem 3.3 to verify that e1 = 1.
Here e(℘|p) = 2, and we know from Example 3.2 that Q13(T ) = −349920T − 75582720. One can
verify (using Sage or Magma) that

ν℘(Q13(j0)) = ν℘(−349920j0 − 75582720) = 1.

Thus,
λ = νK(Q13(j(E)) = ν℘(Q13(j0)) = 1.

Since 1 = λ < 2 = e, it follows from Theorem 3.3 that e1 = λ = 1, as claimed.
Since 26/14 > 1 and e1 = 1, Proposition 5.6 and Remark 5.8 imply that there are 156 · 132(n−1)

torsion points Tn ∈ E[pn] such that the ramification index in L(Tn)/L is divisible by 12 · 132n−1.
Moreover, 2 ≤ 14 so s = 0, and e− e1 = 1. Thus, there are 12 · 132(n−1) points Tn ∈ E[pn] such that
the ramification index in L(Tn)/L is divisible by 12 · 132(n−1).
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