UPDATES FOR "NUMBER THEORY AND GEOMETRY"

Dear Readers,

Here is a list of updates (known typos, errors and omissions, expanded paragraphs, etc.), with the text as it appeared in the first edition, followed by the corrected text (as it will/should appear in a revised edition).

Acknowledgements: I'd like to thank Keith Conrad, Giacomo De Leva, Fernando Gouvêa, Hanson Smith, and Cindy Zhang for identifying a number of typos and errors listed below.
(1) Page 11. Example 1.4.1. The line L is $y=x+1$.

- (Old text) With a little bit of basic plane geometry, we find an equation for $L: y=x-1$ (see Exercise 1.8.8).
- (New text) With a little bit of basic plane geometry, we find an equation for $L: y=x+1$ (see Exercise 1.8.8).
(2) Page 24. Exercise 1.8.6. In part (3), it should specify that the result is for a non-zero complex number α.
- (Old text) Show that any complex number α can be written uniquely as...
- (New text) Show that any non-zero complex number α can be written uniquely as...
(3) Page 38. Proof of Theorem 2.3.14. There are a couple of issues with the second paragraph of the proof, which should read like this instead:
- (New text) Next, let us show the induction step. Let us assume that the theorem is true for sets with more than k elements, and let S be a set with more than $k+1$ elements. Let $S_{1}, S_{2}, \ldots, S_{k}, S_{k+1}$ be $k+1$ subsets of S, such that $\bigcup_{i=1}^{k+1} S_{i}=S$. If the set S_{k+1} has more than one element, then we are done. Otherwise, suppose that S_{k+1} contains only one element of S, or $S_{k+1}=\emptyset$. Then, the union $S^{\prime}=\bigcup_{i=1}^{k} S_{i}$ contains at least $k+1$ elements (since S contains $k+2$ elements, and the missing subset S_{k+1} contains ≤ 1 elements, so $S^{\prime \prime}$ contains $\geq k+2-1=k+1$ elements). Hence, using our induction hypothesis on the set S^{\prime}, we conclude that one of S_{1}, \ldots, S_{k} contains at least two elements.
(4) Page 40. Line 5
- (Old text) Since $r \in S$, there must be...
- (New text) Since $r_{1} \in S$, there must be...
(5) Page 71. Theorem 3.3.11
- (Old text) Let $m>0$ and $a \geq 0$ be fixed integers...
- (New text) Let $m>0$ and $a>0$ be fixed integers...
(6) Page 74. Conjecture 3.4.7 The statement should be for $k \geq 1$.
- (Old text) Let $k \geq 0$ be an integer, \ldots
- (New text) Let $k \geq 1$ be an integer,...
(7) Page 75. Conjecture 3.4.10. The statement of the Bateman-Horn conjecture needs two additional assumptions:
- Each factor $f_{i}(x)$ should have a positive leading coefficient, i.e., if $f_{i}(x)=a_{n} x^{n}+$ $a_{n-1} x^{n-1}+\cdots+a_{0}$, then $a_{n} \geq 1$.
- The values of $f(x)$ on \mathbb{Z} must not all share a common prime factor.
(8) Page 81. Exercise 3.5.22
- (Old text) Show that if $a>0$ and...
- (New text) Show that if $a>1$ and ...
(9) Page 114. Exercise 4.7.26
- (Old text) ...let $k \in \mathbb{Z}$ such that $1 \leq k \leq p \ldots$
- (New text) ...let $k \in \mathbb{Z}$ such that $1 \leq k<p$...
(10) Page 150. Exercise 5.6 .6 part (3)
- (Old text) (Hint: if $a * H$ and $b * H$ are two...
- (New text) (Hint: if $g_{1} * H$ and $g_{2} * H$ are two...
(11) Page 231. Exercise 8.10.10 part (b)
- (Old text) \ldots, then $p=2$ and $a=1$.
- (New text) \ldots, then $p=2$ and $a \equiv 1 \bmod 2$.
(12) Page 388. Corollary 13.3.4. In part (2) of the statement, d should be t.
- (Old text) If $|\alpha-s / t|<\left|\alpha-p_{k} / q_{k}\right|$ for some $k \geq 1$, then $d>q_{k}$.
- (New text) If $|\alpha-s / t|<\left|\alpha-p_{k} / q_{k}\right|$ for some $k \geq 1$, then $t>q_{k}$.
(13) Page 391. Exercise 13.4.14. Here e should also be d, because otherwise $\overline{\alpha+\beta}$ is not defined with the definition we have given for conjugation in the statement.
- (Old text) $\ldots \alpha=u+v \sqrt{d}$ and $\beta=x+y \sqrt{e}$, where $u, v, x, y \in \mathbb{Q}$ and d, e are non-zero integers that are not perfect squares.
- (New text) $\ldots \alpha=u+v \sqrt{d}$ and $\beta=x+y \sqrt{d}$, where $u, v, x, y \in \mathbb{Q}$.
(14) Page 391. Exercise 13.4.20. Here d should be $n^{2}+2 n$.
- (Old text) Let d be a positive integer such that $d=n^{2}+1$, for some integer $n>1$.
- (New text) Let d be a positive integer such that $d=n^{2}+2 n$, for some integer $n>1$.
(15) Page 407. Proof of 14.3 .17 . A + should be a \cdot in the last line of the previous to last displayed equation, because they are elements living in the group $U=(U, \cdot)$ where the operation is multiplication.
- (Old text) $\psi((a \bmod 2, n))+\psi((b \bmod 2, m))$.
- (New text) $\psi((a \bmod 2, n)) \cdot \psi((b \bmod 2, m))$.

