Why are numbers beautiful? It's like asking why is Beethoven's Ninth Symphony beautiful. If you don't see why, someone can't tell you. I know numbers are beautiful. If they aren't beautiful, nothing is. - Paul Erdös

Section A: Induction

Question 1

Prove that $1^{3}+2^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$, for all $n \geq 1$.

Question 2

(a) Prove that, for all $n \geq 1$, we have:

$$
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n-1}+\frac{x^{n}}{1-x} .
$$

(b) Prove that for all $n \geq 1,1+2+2^{2}+\cdots+2^{n-1}=2^{n}-1$.

Question 3

Prove that 5 divides $3^{4 n}-1$, for all $n \geq 1$.

Question 4

Prove that for any odd number $m \geq 1$, the number 9 divides $4^{m}+5^{m}$.

Question 5

The Tower of Hanoi is a mathematical puzzle that consists of three rods and a number of disks of different sizes, which can slide onto any rod (see Figure 1). The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making a conical shape. The objective of the puzzle is to move the entire stack to another rod. The player is only allowed to move one disk at a time, and only smaller disks can be on top of a bigger disk.
Find and prove a formula for the least number of moves required to move a Tower of Hanoi with n disks to another rod. (Hint: find the least number of moves for $n=1, n=2$, and $n=3$, then conjecture a formula, and prove your formula using induction.)

Figure 1: The Tower of Hanoi puzzle, with $n=5$ disks.

Question 6

(a) Show that $n!\leq n^{n}$ for all $n>0$.
(b) $(n+1)^{(n-1)} \leq n^{n}$ for all $n>0$.

Question 7

What is wrong with the following proof? Theorem. All babies have the same color eyes. "Proof". The base case is clear: one baby has the same color eyes as herself or himself. Now suppose we have $n+1$ babies, and name them $\left\{B_{1}, \ldots, B_{n}, B_{n+1}\right\}$. By the induction hypothesis, the babies in sets $\left\{B_{1}, \ldots, B_{n}\right\}$ and those in $\left\{B_{2}, \ldots, B_{n+1}\right\}$ have the same color eyes, and hence all of the babies B_{1}, \ldots, B_{n+1} have the same color eyes.

Section B: Complete Induction

Question 8

Prove that any natural number $n \geq 2$ either is a prime or factors into a product of primes.

Question 9

Prove that the sum of the interior angles of an n-sided convex polygon is $180 \cdot(n-2)$ degrees.

