
MATH 3240 Introduction to Number Theory Homework 1

Why are numbers beautiful? It’s like asking why is Beethoven’s Ninth Symphony
beautiful. If you don’t see why, someone can’t tell you. I know numbers are beautiful.
If they aren’t beautiful, nothing is. - Paul Erdös

Section A: Induction

Question 1

Prove that 13 + 23 + · · ·+ n3 =
(
n(n+1)

2

)2
, for all n ≥ 1.

Solution:

We use induction. The base case is n = 1 which is obvious:

1 = 13 =

(
1 · 2

2

)2

= 12 = 1.

Now, let us prove the induction step. For this, assume that the result is true for some
n ≥ 1 and we need to prove that the result is true for n + 1. Hence, we need to prove:

13 + 23 + · · ·+ n3 + (n + 1)3 =?

(
(n + 1)(n + 2)

2

)2

.

This is indeed true because:

13 + 23 + · · ·+ n3 + (n + 1)3 =

(
n(n + 1)

2

)2

+ (n + 1)3

=
n2(n + 1)2

4
+ (n + 1)3

= (n + 1)2 ·
(
n2

4
+ (n + 1)

)
= (n + 1)2 ·

(
n2 + 4n + 4

4

)
=

(n + 1)2(n + 2)2

4
=

(
(n + 1)(n + 2)

2

)2

.

This proves the induction step. Hence, by the Principle of Mathematical Induction, the
equality is true for all n ≥ 1.

Question 2

(a) Prove that, for all n ≥ 1, we have:

1

1− x
= 1 + x + x2 + · · ·+ xn−1 +

xn

1− x
.

(b) Prove that for all n ≥ 1, 1 + 2 + 22 + · · ·+ 2n−1 = 2n − 1.

Solution:
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(a). We will use induction. The base case (n = 1) is “trivial” (= almost obvious):

1 +
x

1− x
=

1− x + x

1− x
=

1

1− x
.

Now we prove the induction step. Suppose the equality is true for some n ≥ 1
and we want to prove it for n+ 1. Since we can assume the equality for n, we also
know that:

1

1− x
− xn

1− x
= 1 + x + x2 + · · ·+ xn−1.

We will use the above equation below. At this point, it remains to verify the
following equality:

1

1− x
=? 1 + x + x2 + · · ·+ xn−1 + xn +

xn+1

1− x
.

Let’s start working with the right hand side:

1 + x + x2 + · · ·+ xn−1 + xn +
xn+1

1− x
=

1

1− x
− xn

1− x
+ xn +

xn+1

1− x

=
1− xn + xn(1− x) + xn+1

1− x

=
1− xn + xn − xn+1 + xn+1

1− x
=

1

1− x

as desired. Hence, the induction step is proven, and by the Principle of Mathe-
matical Induction, the equality is true for all n ≥ 1.

(b). Now, plug x = 2 in the equality we just prove to get:

1

1− 2
= 1 + 2 + 22 + · · ·+ 2n−1 +

2n

1− 2

or
2n − 1 = 1 + 2 + 22 + · · ·+ 2n−1

as needed.

Question 3
Prove that 5 divides 34n − 1, for all n ≥ 1.

Solution:

We use Induction. The base case, n = 1 is clear since 34 − 1 = 80 = 5 · 16 is divisible
by 5. Now suppose that this property is true for some n ≥ 1 and so, 34n− 1 is divisible
by 5. Let us write then 34n− 1 = 5k for some natural number k ≥ 1. We need to prove
that 34(n+1) − 1 is also divisible by 5. But:

34n+4 − 1 = 34(34n)− 1 = 81(5k + 1)− 1 = 405k + 81− 1 = 405k + 80 = 5 · (81k + 16).

Hence, 34(n+1) − 1 is also divisible by 5. Hence, the induction step is proven, and by
the Principle of Mathematical Induction, the property is true for all n ≥ 1.
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Question 4
Prove that for any odd number m ≥ 1, the number 9 divides 4m + 5m.

Solution:

Every odd number m can be written as 2n+ 1, for some n ≥ 0 (by the division theorem
the remainder when dividing by 2 is 1 or 0, and since m is odd, it must be a remainder
of 1). We use induction on n to prove the result. The base case is trivial since 4 + 5 = 9
is divisible by 9. Suppose next that n ≥ 1 is a number such that 42n+1 + 52n+1 is
divisible by 9. Let us write 42n+1 + 52n+1 = 9k for some k ≥ 1. We shall show that
42(n+1)+1 + 52(n+1)+1 is also divisible by 9. Indeed:

42n+3 + 52n+3 = 16 · 42n+1 + 25 · 52n+1 = 16(42n+1 + 52n+1) + 9 · 52n+1

= 16 · 9k + 9 · 52n+1 = 9(16k + 52n+1).

Hence, 42(n+1)+1 + 52(n+1)+1 is also divisible by 9. Hence, the induction step is proven,
and by the Principle of Mathematical Induction, the property is true for all numbers
n ≥ 1, and so 4m + 5m is divisible by 9 for all odd numbers m ≥ 1. Notice that this
property is not true for even m, e.g. 42 + 52 = 16 + 25 = 41.

Question 5
Prove a formula for the least number of moves required to move a Tower of Hanoi with n
disks to another pole.

Solution:

We shall prove using induction that the least number of moves is 2n − 1, for all n ≥ 1.
The base case is trivial: if you only have one disk, then it only takes one move to take
one disk to another pole.

Now, suppose that the least number of moves to take a tower of n disks to another pole
is exactly 2n − 1. Let us suppose that we have a tower of n+ 1 disks. In order to move
the tower, we will eventually have to move the last disk at the bottom of the pile. In
order to access the last disk, we first need to move the n disks on top to another pole.
Notice that we need them all in one single pole to allow space to move the largest disk to
another pole. This will take at least 2n−1 moves, by the induction hypothesis. Then we
can move the (n+1)th disk to another pole (at least 1 extra move) and, last, we need to
move the other n disks back on top of the largest disk. This last procedure is identical
to moving a tower of n disks to another pole, hence, by the induction hypothesis, it
will take at least 2n − 1 moves. In total, we have used at least the following number of
moves:

(2n − 1) + 1 + (2n − 1) = 2 · 2n − 1 = 2n+1 − 1.
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Hence, the induction step is proven, and by the Principle of Mathematical Induction,
the property is true for all n ≥ 1.

Question 6

(a) Show that n! ≤ nn for all n > 0.

(b) (n + 1)(n−1) ≤ nn for all n > 0.

Solution:

(a). For n = 1 we have 1! = 1 ≤ 11 = 1. Now suppose that n! ≤ nn. Then:

(n + 1)! = (n + 1) · n! ≤ (n + 1)nn ≤ (n + 1)(n + 1)n ≤ (n + 1)(n+1),

since n < (n + 1). Therefore, by the principle of mathematical induction, the
result is true for all n ≥ 1.

(b). Let us start with the base case n = 1: 1 = 20 ≤ 11 = 1. Now, let us assume that
(n + 1)(n−1) ≤ nn for some n ≥ 1. Equivalently, we may assume that:(

n + 1

n

)n

≤ n + 1.

We shall prove that: (
n + 2

n + 1

)n+1

≤? n + 2.

Indeed, notice that n+2
n+1 ≤

n+1
n , for all n ≥ 1 and therefore:(

n + 2

n + 1

)n+1

=

(
n + 2

n + 1

)n

·
(
n + 2

n + 1

)
≤

(
n + 1

n

)n

·
(
n + 2

n + 1

)
≤ (n + 1) · (n + 2)

(n + 1)
≤ n + 2.

Therefore, by the principle of mathematical induction, the result is true for all
n ≥ 1.

Note: Have you noticed how HARD it is to prove, using Calculus,
that the function F (x) = (x + 1)(x−1) is less than G(x) = xx? However,
induction makes it easy!

Question 7
What is wrong with the following proof? Theorem. All babies have the same color eyes.
“Proof”. The base case is clear: one baby has the same color eyes as helself or himself.
Now suppose we have n + 1 babies, and name them {B1, . . . , Bn, Bn+1}. By the induction
hypothesis, the babies in sets {B1, . . . , Bn} and those in {B2, . . . , Bn+1} have the same color
eyes, and hence all of the babies B1, . . . , Bn+1 have the same color eyes.
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Solution:

The problem is at the base case. The theorem can be restated as “Any subset of n
babies have the same color eyes”. Since the statement is a comparison among babies,
the base case should be the case n = 2, and not the case n = 1. In other words, to
use the induction step mentioned in the “proof”, one would have to first prove the case
n = 2: any two babies have the same color eyes. But, of course, this is already false.

Section B: Complete Induction

Question 8
Prove that any natural number n ≥ 2 either is a prime or factors into a product of primes.

Solution:

We shall prove this using complete induction. The base case n = 2 is clear, since 2 is
prime. Now suppose that all integers 2 ≤ k < n are either a prime or factor into a
product of primes. If n is prime, then we are done. Otherwise, if n is not prime, then it
is composite. Thus there exist positive integers a, b with 1 < a, b < n and n = a · b. By
the induction hypothesis, both a and b are either primes or a product of primes, say

a = p1 · p2 · · · pr, b = q1 · q2 · · · qs

for some primes p1, . . . , pr, q1, . . . , qs. Hence

n = ab = p1 · p2 · · · pr · q1 · q2 · · · qs

is a product of primes. Hence, the induction step is proven, and by the Strong Principle
of Mathematical Induction, the property is true for all n ≥ 2.

Question 9
Prove that the sum of the interior angles of an n-sided convex polygon is 180(n−2) degrees.

Solution:

We shall prove this using complete induction, for all n ≥ 3. We will assume the well
known fact that the sum of the interior angles of a triangle is 180 degrees (can you find
a proof of this well known fact?). This shows the base case. Now, assume that for every
3 ≤ k < n, the sum of the interior angles of every k-sided convex polygon is 180(k − 2)
degrees. Let P be an n-sided convex polygon, for some n > 3. By drawing a segment
between two non-consecutive vertices, we may divide the polygon P into two polygons
Q and R which share an edge. Notice that both Q and R are convex polygons, and they
have strictly less than n sides each. Let’s say Q and R have q and r sides, respectively.
Also notice that (q − 1) + (r − 1) = n and the sum of the interior angles of P is equal
to the sum of the interior angles of Q plus the sum of the interior angles of R. By
the induction hypothesis, the sum of the interior angles of Q and R are 180(q − 2) and
180(r − 2) respectively. Therefore, the sum of the interior angles of P is:

180(q − 2) + 180(r − 2) = 180(q + r − 4) = 180(n− 2).
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Hence, the induction step is proven, and by the Principle of Mathematical Induction,
the property is true for all n ≥ 3.


