Highlights of Chapters 1-4.

Chapter 2: The Integers \mathbb{Z}

- 1. Well ordering principle of \mathbb{N} : every non-empty set of \mathbb{N} has a least element.
- 2. Principle of Mathematical Induction: If (a) the statement is true for n_0 , and (b) if the statement is true for k, this implies k + 1 is true, then the statement is true for all $n \ge n_0$.
- 3. Division Theorem: $a, b \in \mathbb{Z}, b \neq 0$, then there are $q, r \in \mathbb{Z}$ such that a = qb + r with $0 \leq r < b$.
- 4. Definition of divisibility: b|a if there is $k \in \mathbb{Z}$ such that a = bk.
- 5. Greatest common divisor: $d = \gcd(a, b)$ if (a) d|a and d|b, and (b) if e|a, e|b then $e \leq d$.
- 6. Euclid's algorithm (based on repeated long division).
- 7. Bezout's identity: ax + by = c has solutions $x, y \in \mathbb{Z}$ if and only if gcd(a, b)|c.
 - (a) Rational roots of polynomials.
 - (b) Points in a line: if (x_0, y_0) is one solution for ax + by = c, then all the solutions are given by $x = x_0 + \frac{bk}{d}$, $y = y_0 \frac{ak}{d}$, for all $k \in \mathbb{Z}$, where d = gcd(a, b).
- 8. Key corollary of Bezout's identity, Euclid's Lemma: if a|bc and gcd(a, b) = 1, then a|c.
- 9. Fundamental theorem of arithmetic
 - (a) Every number has a factorization as a product of primes $n = p_1^{e_1} \cdots p_t^{e_t}$, where $p_1 < p_2 < \cdots < p_t$ are primes and $e_t \ge 1$.
 - (b) The factorization into primes is unique up to a reordering of prime-power factors.

Chapter 3: The Prime Numbers

- 1. The sieve of Eratosthenes.
- 2. Euclid's theorem on the infinitude of the primes: if $S = \{p_1, \ldots, p_n\}$ are primes, then $N = p_1 p_2 \cdots p_n + 1$ is divisible only by (new) primes not in the set S.
- 3. Bertrand's postulate: for all $n \ge 2$ there is a prime n .
- 4. The prime number theorem: $\pi(x)$ is approximately $x/\log x$ for large x.
- 5. Dirichlet's theorem on primes in arithmetic progressions: if gcd(a, m) = 1, then there are infinitely many primes $p \equiv a \mod m$.
- 6. The twin prime conjecture: there are infinitely many primes p such that p + 2 is also prime.
- 7. Goldbach's conjecture: every even number n > 2 can be written n = p + q, with p, q primes.

Chapter 4: Congruences

- 1. Definition of congruence: $a \equiv b \mod m$ if m|a b.
- 2. Properties of congruences, e.g., if $a \equiv b \mod m$, then $a^k \equiv b^k \mod m$, for all $k \ge 1$.
- 3. Cancellation properties of congruences, e.g., if $ac \equiv bc \mod m$, then $a \equiv b \mod \frac{m}{\gcd(m,c)}$.
- 4. The congruence $ax \equiv b \mod m$ has a solution if and only if ax + my = b has a solution $x, y \in \mathbb{Z}$, if and only if gcd(a, m) divides b.
 - (a) Divisibility tests, e.g., a number is divisible by 9 if the sum of digits is divisible by 9.
 - (b) Check digits.