## Highlights of Chapters 1-4.

## Chapter 2: The Integers $\mathbb{Z}$

1. Well ordering principle of $\mathbb{N}$ : every non-empty set of $\mathbb{N}$ has a least element.
2. Principle of Mathematical Induction: If (a) the statement is true for $n_{0}$, and (b) if the statement is true for $k$, this implies $k+1$ is true, then the statement is true for all $n \geq n_{0}$.
3. Division Theorem: $a, b \in \mathbb{Z}, b \neq 0$, then there are $q, r \in \mathbb{Z}$ such that $a=q b+r$ with $0 \leq r<b$.
4. Definition of divisibility: $b \mid a$ if there is $k \in \mathbb{Z}$ such that $a=b k$.
5. Greatest common divisor: $d=\operatorname{gcd}(a, b)$ if (a) $d \mid a$ and $d \mid b$, and (b) if $e|a, e| b$ then $e \leq d$.
6. Euclid's algorithm (based on repeated long division).
7. Bezout's identity: $a x+b y=c$ has solutions $x, y \in \mathbb{Z}$ if and only if $\operatorname{gcd}(a, b) \mid c$.
(a) Rational roots of polynomials.
(b) Points in a line: if $\left(x_{0}, y_{0}\right)$ is one solution for $a x+b y=c$, then all the solutions are given by $x=x_{0}+\frac{b k}{d}, y=y_{0}-\frac{a k}{d}$, for all $k \in \mathbb{Z}$, where $d=\operatorname{gcd}(a, b)$.
8. Key corollary of Bezout's identity, Euclid's Lemma: if $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
9. Fundamental theorem of arithmetic
(a) Every number has a factorization as a product of primes $n=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}$, where $p_{1}<p_{2}<$ $\cdots<p_{t}$ are primes and $e_{t} \geq 1$.
(b) The factorization into primes is unique up to a reordering of prime-power factors.

## Chapter 3: The Prime Numbers

1. The sieve of Eratosthenes.
2. Euclid's theorem on the infinitude of the primes: if $S=\left\{p_{1}, \ldots, p_{n}\right\}$ are primes, then $N=$ $p_{1} p_{2} \cdots p_{n}+1$ is divisible only by (new) primes not in the set $S$.
3. Bertrand's postulate: for all $n \geq 2$ there is a prime $n<p<2 n$.
4. The prime number theorem: $\pi(x)$ is approximately $x / \log x$ for large $x$.
5. Dirichlet's theorem on primes in arithmetic progressions: if $\operatorname{gcd}(a, m)=1$, then there are infinitely many primes $p \equiv a \bmod m$.
6. The twin prime conjecture: there are infinitely many primes $p$ such that $p+2$ is also prime.
7. Goldbach's conjecture: every even number $n>2$ can be written $n=p+q$, with $p, q$ primes.

## Chapter 4: Congruences

1. Definition of congruence: $a \equiv b \bmod m$ if $m \mid a-b$.
2. Properties of congruences, e.g., if $a \equiv b \bmod m$, then $a^{k} \equiv b^{k} \bmod m$, for all $k \geq 1$.
3. Cancellation properties of congruences, e.g., if $a c \equiv b c \bmod m$, then $a \equiv b \bmod \frac{m}{\operatorname{gcd}(m, c)}$.
4. The congruence $a x \equiv b \bmod m$ has a solution if and only if $a x+m y=b$ has a solution $x, y \in \mathbb{Z}$, if and only if $\operatorname{gcd}(a, m)$ divides $b$.
(a) Divisibility tests, e.g., a number is divisible by 9 if the sum of digits is divisible by 9 .
(b) Check digits.
