Mathematics is the queen of the sciences and number theory is the queen of mathematics. (Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik.). - Carl Friedrich Gauss

Question 1. Show that n and $n+1$ are coprime for all $n \geq 1$.

Solution:

If e is an integer that divides n and $n+1$ simultaneously, then e also divides $(n+1)-n=1$. Thus $e= \pm 1$. Hence the gcd of n and $n+1$ must be 1 .

Question 2. Show that if e divides a and b then e divides $a r+b s$ for any integers r and s.

Solution:

Suppose e divides a and b. Then $a=k e$ and $b=j e$ for some integers k and j. Thus:

$$
a r+b s=k e r+j e s=e(k r+j s)
$$

and therefore e also divides $a r+b s$.

Question 3. Use Euclid's algorithm to find the following GCD's:
(a) $(121,365)$,
(b) $(89,144)$,
(c) $(295,595)$,
(d) $(1001,1309)$.

Solution:

Use Euclid's algorithm (ask me if you have doubts):

1. $(121,365)=1$,
2. $(89,144)=1$,
3. $(295,595)=5$,
4. $(1001,1309)=77$.

Question 4. Find the GCD of 17017 and 18900 using Euclid's algorithm.

Solution:

$(17017,18900)=7$, show your work!

Question 5. Find d, the GCD of a and b, i.e., $d=(a, b)$, and $r, s \in \mathbb{Z}$ such that $a r+b s=d$: (a) $a=267$ and $b=112$,
(b) $a=242$ and $b=1870$.

Solution:

Use Euclid's and then backwards... show your work!

1. $(267,112)=1$, and $r=-13$ and $s=31$, i.e. $267 \cdot(-13)+112 \cdot(31)=1$,
2. $(242,1870)=22$ and $r=31$ and $s=-4$, i.e. $242 \cdot(31)+1870 \cdot(-4)=22$.

Question 6. Find all solutions with integer coefficients x and y :
(a) $267 x+112 y=3$,
(b) $376 x+72 y=18$.

Solution:

1. $267 x+112 y=3$.

First, we find the GCD of 267 and 112 using Euclid's algorithm (show your work). It is equal to 1 . Next, we find one solution to $267 x+112 y=1$ by going backwards. We find:

$$
267 \cdot(-13)+112 \cdot(31)=1
$$

Therefore, if we multiply throughout by 3 we get:

$$
267 \cdot(-39)+112 \cdot(93)=3
$$

By a theorem in class (Theorem 2.9.4 in the book), all the solutions are:

$$
x=-39+\frac{112}{1} n=-39+112 n, \quad y=93-\frac{267}{1} n=93-267 n
$$

for all integers n, since $\operatorname{gcd}(112,267)=1$.
2. $376 x+72 y=18$.

If you calculate the GCD of 376 and 72 you will find out that it is equal to 8 . However, 8 does not divide 18. Hence, by a theorem in class (Prop. 2.9.1 in the book), this equation does not have solutions in x, y integers.

Question 7. Find all solutions with integer coefficients x and y :
(a) $203 x+119 y=47,48$, or 50 ,
(b) $203 x+119 y=49$.

Solution:

1. $203 x+119 y=47,48,50$.

These equations do not have solutions because the GCD of 203 and 119 is equal to 7 and 7 does not divide any of 47,48 or 50 (by Prop. 2.9.1).
2. $203 x+119 y=49$.

First we use Euclid's algorithm to find a solution of $203 x+119 y=1$, which can be done because the GCD of 203 and 119 is equal to 1 . (Show your work) We find that:

$$
203 \cdot(-7)+119 \cdot(12)=7
$$

Now multiply the equation by 7 to obtain:

$$
203 \cdot(-49)+119 \cdot(84)=49
$$

Therefore, all the solutions are given by:

$$
x=-49+\frac{119}{7} n=-49+17 n, \quad y=84-\frac{203}{7} n=84-29 n
$$

by Theorem 2.9.4, where we have used the fact that the GCD is 7 . Of all these, the smallest is $x=2$ and $y=-3$.

Question 8. Prove that if $(a, b)=d$ then $\left(\frac{a}{d}, \frac{b}{d}\right)=1$.

Solution:

Let $(a, b)=d$. Then, by Bezout's identity, there are r, s integers such that

$$
a r+b s=d
$$

Since d divides a and b, we may divide and get:

$$
\frac{a}{d} r+\frac{b}{d} s=1
$$

Therefore, by Bezout's identity, the GCD of $\frac{a}{d}$ and $\frac{b}{d}$ must divide 1 and it is thus equal to 1.

Question 9. Find all the natural, integral and rational roots of the polynomial equation

$$
5 x^{3}+27 x^{2}-153 x+81=0
$$

Solution:

In order to find any rational solutions of this equation, we use the theorem that says that if $\frac{m}{n}$ is a root, then m is a divisor of 81 and n is a divisor of 5 . Thus, $m \in\{ \pm 1, \pm 3, \pm 9, \pm 27, \pm 81\}$, and $n \in\{1,5\}$. After checking these possibilities, we find that $x=3 \in \mathbb{N}, x=-9 \in \mathbb{Z}$ and $x=\frac{3}{5}$ are all the roots of the equation.

Question 10. Show that if $n>1$ is not prime then n has a prime divisor $\leq \sqrt{n}$.

Solution:

Let n be composite and suppose for a contradiction that every prime divisor of n is bigger than \sqrt{n}. Since n is composite, $n=a b$ for some $1<a, b<n$. Since every integer has a prime divisor, and since every prime divisor of a or b is also a divisor of n, we conclude that $a, b>\sqrt{n}$. But then:

$$
n=a b>\sqrt{n} \sqrt{n}=n
$$

Hence $n>n$ which is a clear contradiction. So there must be at least one prime divisor $\leq \sqrt{n}$.

Question 11. Is 44497 prime? Why, or why not?

Solution:

Yes it is prime. In order to check this, one needs to check that all primes between 1 and $\sqrt{44497}=210.9 \ldots$ do not divide 44497. (Show some work, at least a list of primes between 1 and 210).

Question 12.

(a) Prove that a natural number is a square if and only if the exponent of each prime factor is even.
(b) Prove that if a number n is not a square then \sqrt{n} is irrational.

Solution:

1. Suppose n is a square. Then $n=b^{2}$ for some integer b. By the FTA, b has a prime factorization

$$
b=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}
$$

where all the p_{i} are distinct primes and $e_{i}>0$. Hence:

$$
n=b^{2}=p_{1}^{2 e_{1}} p_{2}^{2 e_{2}} \cdots p_{r}^{2 e_{r}}
$$

and this is the prime factorization of n, with all even exponents.
Conversely, if

$$
n=p_{1}^{2 e_{1}} p_{2}^{2 e_{2}} \cdots p_{r}^{2 e_{r}}
$$

then $n=b^{2}$ with

$$
b=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}
$$

and so n is a square.
2. Suppose n is not a square. Then there exists a prime p that divides n and in the prime factorization of n, the prime p appears to an odd power. Thus $n=p^{2 e+1} m$ for some $e \geq 0$ and some m relatively prime to p (why?). Suppose that $\sqrt{n}=\frac{s}{t}$ for some integers s, t. Then

$$
n t^{2}=s^{2}
$$

and therefore $p^{2 e+1} m t^{2}=s^{2}$. However, s^{2} is clearly a square, so the exponents in its prime factorization must be all even, but on the left hand side, p appears to an odd power (notice that even if a p appears in t, it would only add an even amount to $2 e+1$ leaving the exponent odd). This is a contradiction, and \sqrt{n} must be irrational.

Question 13. Show that $100^{(1 / 3)}$ is irrational.

Solution:

Suppose that $100^{(1 / 3)}=\frac{n}{m}$ for some integers n, m. Then $100 m^{3}=n^{3}$ or equivalently:

$$
2^{2} \cdot 5^{2} \cdot m^{3}=n^{3}
$$

By the fundamental theorem of arithmetic, m and n have unique factorizations as products of prime numbers. Let 5^{e} and 5^{f} be the powers of 5 that appears in the factorization of m and n respectively (with $e \geq 0$ and $f \geq 0$). By the uniqueness of the factorization, the power of 5 that appears in the factorization of the left hand side is of the form $2+3 e$ while on the right hand side is of the form $3 f$, and they must be equal. But $2+3 e=3 f$ has no solutions in integers e, f, because it would imply that $2=3 e+3 f=3(e+f)$ and so 2 is a multiple of 3 . This is a contradiction.

Question 14. Show that if a, b are natural numbers with $(a, b)=1$ and $a b$ is a square, then a and b are also squares.

Solution:

We use Question 12. Since $a b$ is a square, we have

$$
a b=p_{1}^{2 e_{1}} p_{2}^{2 e_{2}} \cdots p_{r}^{2 e_{r}}
$$

where all the p_{i} are distinct primes and $e_{i}>0$. Since a and b are relatively prime, if p_{i} divides a then it does not divide b. Thus, after reordering the primes p_{i}, we may assume WLOG that:

$$
a=p_{1}^{2 e_{1}} p_{2}^{2 e_{2}} \cdots p_{i}^{2 e_{i}}, \quad b=p_{i+1}^{2 e_{i+1}} p_{i+2}^{2 e_{i+2}} \cdots p_{r}^{2 e_{r}}
$$

And so, the exponents of the primes in the factorizations of a and b are all even. Hence, by Question 12, a and b are also squares.

