God made the integers, all else is the work of man. (Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.). - Leopold Kronecker

Question 1. Prove that there are infinitely many primes of the form $4 n-1$.

Question 2. Prove that there are infinitely many primes of the form $6 n-1$.
Question 3. Let $a_{1}=2$ and $a_{n+1}=a_{n}\left(a_{n}-1\right)+1$. First prove that $a_{n+1}=a_{1} a_{2} \cdots a_{n}+1$. Then, prove that for all $m \neq n$, the numbers a_{m} and a_{n} are relatively prime.

Question 4. Prove that for any $n \geq 1$ there are n consecutive composite numbers.

Question 5. Prove that for any $n \geq 2$ there is a prime p with $n<p \leq n!+1$.

Question 6. Find the least non-negative residues of (a) $365 \bmod 5$, (b) $-3122 \bmod 3$, (c) $3122082546 \bmod 10$, and $(\mathrm{d})-2445678 \bmod 10$.

Question 7. Find one integer $a \in \mathbb{Z}$ that satisfies, simultaneously, both congruences $a \equiv 5$ $\bmod 8$ and $a \equiv 3 \bmod 7$.

Question 8. Show that if $n>4$ is not prime then $(n-1)!\equiv 0 \bmod n$.

Question 9. Prove the following properties of congruences:
(a) If $a \equiv b \bmod n$ then $k a \equiv k b \bmod n$.
(b) If $a \equiv b \bmod n$ and $a^{\prime} \equiv b^{\prime} \bmod n$ then $a+a^{\prime} \equiv b+b^{\prime} \bmod n$.

Question 10. Use congruences to show that $6 \cdot 4^{n} \equiv 6 \bmod 9$ for any $n \geq 0$.

Question 11. Find the least nonnegative residues.
(a) $5^{18} \bmod 7$.
(b) $68^{105} \bmod 13$.
(c) $6^{47} \bmod 12$.

Question 12. Show that $5^{e}+6^{e} \equiv 0 \bmod 11$ for all odd numbers e.

Question 13. Prove the part (a), then find the least nonnegative residue modulo 7,11 and 13 in parts (b), (c) and (d).
(a) A number N is congruent modulo 7,11 , or 13 , to the alternating sum of its digits in base 1000. (For example, $123456789 \equiv 789-456+123 \equiv 456 \bmod 7,11$, or 13. .)
(b) 11233456,
(c) 58473625,
(d) $100,000,000,000,000,001$.

Question 14. Find divisibility tests for numbers in base 34 for $2,3,5,7,11$ and 17 .

Question 15. Show that $2^{560} \equiv 1 \bmod 561$.

