God made the integers, all else is the work of man. (Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.). - Leopold Kronecker

Question 1. Prove that there are infinitely many primes of the form 4n - 1.

Solution:

First of all, notice that every natural number is either 0, 1, 2 or $3 \mod 4$. No prime number can be 0 modulo 4 because it would be divisible by 4. Also, every $n \equiv 2 \mod 4$ is an even number (why?) so the only prime $p \equiv 2 \mod 4$ is p = 2. Thus, every odd prime is either $p \equiv 1$ or $3 \mod 4$. Suppose for a contradiction that there are only finitely many primes congruent to $3 \mod 4$ and call them p_1, \ldots, p_n . Let us consider the number:

$$N = 4p_1p_2\cdots p_n - 1.$$

Notice that $N \equiv -1 \equiv 3 \mod 4$. Therefore N is odd and not divisible by 2. By the Fundamental Theorem of Arithmetic, N has a prime factorization into primes:

$$N = 4p_1p_2\cdots p_n - 1 = q_1q_2 \cdot q_r$$

for some (odd) primes q_1, q_2, \ldots, q_r . Suppose that all q_i are $\equiv 1 \mod 4$. Then:

$$N = q_1 q_2 \cdot q_r \equiv 1 \cdot 1 \cdots 1 \equiv 1 \mod 4$$

but we proved above that $N \equiv 3 \mod 4$. Therefore, it must be the case that at least one prime q_i , divisor of N, is $\equiv 3 \mod 4$. But then, q_i must be one of the primes p_1, \ldots, p_n . Hence q_i divides N, and also divides $p_1p_2\cdots p_n$, and hence, q_i divides $N-4p_1p_2\cdots p_n=-1$, but this is clearly impossible.

Hence we have reached a contradiction, and there cannot be just finitely many primes of the form 4n - 1 (i.e. $\equiv 3 \mod 4$).

Question 2. Prove that there are infinitely many primes of the form 6n - 1.

Solution:

First of all, notice that every natural number is either 0, 1, 2, 3, 4 or $5 \mod 6$. No prime number can be 0 modulo 6 because it would be divisible by 6. Also, every $n \equiv 2 \mod 6$ is an even number (why?) so the only prime $p \equiv 2 \mod 6$ is p = 2, and every $n \equiv 3 \mod 6$ is a multiple of 3 (why?) so the only prime $p \equiv 3 \mod 6$ is p = 3. Thus, every prime > 3 is either $p \equiv 1$ or $5 \mod 6$. Suppose for a contradiction that there are only finitely many primes congruent to $5 \mod 6$ and call them p_1, \ldots, p_n . Let us consider the number:

$$N = 6p_1p_2\cdots p_n - 1.$$

Notice that $N \equiv -1 \equiv 5 \mod 6$. Therefore N is odd and not divisible by 2 or 3. By the Fundamental Theorem of Arithmetic, N has a prime factorization into primes:

$$N = 6p_1p_2\cdots p_n - 1 = q_1q_2 \cdot q_r$$

for some (odd) primes q_1, q_2, \ldots, q_r . Suppose that all q_i are $\equiv 1 \mod 6$. Then:

$$N = q_1 q_2 \cdot q_r \equiv 1 \cdot 1 \cdots 1 \equiv 1 \mod 6$$

but we proved above that $N \equiv 5 \mod 6$. Therefore, it must be the case that at least one prime q_i , divisor of N, is $\equiv 5 \mod 6$. But then, q_i must be one of the primes p_1, \ldots, p_n . Hence q_i divides N, and also divides $p_1p_2\cdots p_n$, and hence, q_i divides $N-6p_1p_2\cdots p_n=-1$, but this is clearly impossible.

Hence we have reached a contradiction, and there cannot be just finitely many primes of the form 6n - 1 (i.e. $\equiv 5 \mod 6$).

Question 3. Let $a_1 = 2$ and $a_{n+1} = a_n(a_n - 1) + 1$. Prove that $a_{n+1} = a_1a_2 \cdots a_n + 1$. Prove that for all $m \neq n$, the numbers a_m and a_n are relatively prime.

Solution:

We prove the first equality by induction. First, we deal with the base case n = 2:

 $a_2 = a_1(a_1 - 1) + 1 = 2(2 - 1) + 1 = 2 \cdot 1 + 1 = 3 = a_1 + 1.$

Now suppose that the equality $a_n = a_1 a_2 \cdots a_{n-1} + 1$ holds (or equivalently, $a_n - 1 = a_1 a_2 \cdots a_{n-1}$), and we want to prove it for n + 1. We see that:

$$a_{n+1} = a_n(a_n - 1) + 1 = a_n(a_1a_2\cdots a_{n-1}) + 1 = a_1a_2\cdots a_n + 1$$

as claimed. Thus, by the Principle of Mathematical Induction, the equality holds for all $n \ge 2$.

In order to prove that for all $m \neq n$, the numbers a_m and a_n are relatively prime, we shall prove that for all $n \geq 2$, a_n is relatively prime to all a_m with $1 \leq m < n$. Indeed, if d divides a_n and a_m then d also divides

$$a_n - a_1 a_2 \cdots a_{n-1} = 1$$

and therefore $d = \pm 1$. Hence, the GCD of a_m and a_n must be 1.

Question 4. Prove that for any $n \ge 1$ there are *n* consecutive composite numbers.

Solution:

Let $n \ge 1$ and consider the number N = (n+1)! + 2, and the *n* consecutive numbers

$$N, N+1, N+2, \dots, N+(n-1).$$

Notice that N = (n + 1)! + 2 is divisible by 2 (and larger than 2, so it must be composite), N + 1 = (n + 1)! + 3 is divisible by 3 (and larger than 3), and N + i = (n + 1)! + 2 + i is divisible by 2 + i, as long as $0 \le i \le n - 1$.

Question 5. Prove that for any $n \ge 2$ there is a prime p with n .

Solution:

If n!+1 is prime, then pick p = n!+1. Otherwise, if n!+1 is composite, then it has a prime factor q with 1 < q < n!+1. If n < q < n!+1 then pick p = q. Otherwise, if $1 < q \leq n$ then q divides n!+1 but it also divides n! and so q would divide 1. That's impossible, so we must have $n < q \leq n!+1$ and we can pick p = q.

Question 6. Find the least non-negative residues.

- (a) $365 \mod 5$.
- (b) $-3122 \mod 3$.
- (c) 3122082546 mod 10.
- (d) $-2445678 \mod 10$.

Solution:

Show your work!

- 1. $365 \equiv 0 \mod 5$ because $365 = 5 \cdot 73 + 0$.
- 2. $-3122 \equiv 1 \mod 3$ because -3122 = 3(-1041) + 1.
- 3. $3122082546 \equiv 6 \mod 10$ because $3122082546 = 312208254 \cdot 10 + 6$.
- 4. $-2445678 \equiv -8 \equiv 2 \mod 10$ because $-2445678 = (-244568) \cdot 10 + 2$.

Question 7. Find one integer $a \in \mathbb{Z}$ that satisfies, simultaneously, both congruences $a \equiv 5 \mod 8$ and $a \equiv 3 \mod 7$.

Solution:

If $a \equiv 5 \mod 8$ then a = 5 + 8x for some integer x. If $a \equiv 3 \mod 7$ then 5 + 8x = 3 + 7y for some integer y. Thus 8x - 7y = -2. The equation 8x - 7y = 1 has a solution x = y = 1. Thus 8x - 7y = -2 has a solution x = y = -2. Thus a = 5 + 8(-2) = 5 - 16 = -11 works. (Check your work: $a = -11 \equiv -3 \equiv 5 \mod 8$ and $a = -11 \equiv -4 \equiv 3 \mod 7$, so it does work).

Question 8. Show that if n > 4 is not prime then $(n-1)! \equiv 0 \mod n$.

Solution:

Suppose n is composite. Then there are a, b with n = ab and 1 < a, b < n. If 1 < a < b < n then:

$$(n-1)! = 1 \cdot 2 \cdot 3 \cdots a \cdots b \cdots (n-1)$$

so clearly (n-1)! is divisible by ab = n and it must be $\equiv 0 \mod n$.

If a = b, i.e. $n = a^2$, as long as a > 1 we have:

$$(n-1)! = 1 \cdot 2 \cdot 3 \cdots a \cdots 2a \cdots 3a \cdots (a-1)a \cdots (a^2-1)$$

where $a^2 - 1 = n - 1$. Thus, (n - 1)! is divisible by (at least) $a \cdot 2a = 2a^2$, and therefore n divides (n - 1)!.

Question 9. Prove the following properties of congruences: (a) If $a \equiv b \mod n$ then $ka \equiv kb \mod n$.

(b) If $a \equiv b \mod n$ and $a' \equiv b' \mod n$ then $a + a' \equiv b + b' \mod n$.

Solution:

- 1. Suppose $a \equiv b \mod n$. That means *n* divides a b, i.e. there exists *d* such that a b = dn. Thus, also, ka kb = kdn which means that *n* divides ka kb, or equivalently $ka \equiv kb \mod n$.
- 2. Suppose $a \equiv b \mod n$ and $a' \equiv b' \mod n$. Then there are integers d and d' such that a b = dn and a' b' = d'n. Thus:

$$a + a' - (b + b') = (a - b) + (a' - b') = dn + d'n = (d + d')n$$

and so, n divides a + a' - (b + b') which means that $a + a' \equiv b + b' \mod n$.

Question 10. Use congruences to show that $6 \cdot 4^n \equiv 6 \mod 9$ for any $n \ge 0$.

Solution:

The powers of 4 modulo 9 are

$$4, 4^2 \equiv 16 \equiv 7, 4^3 \equiv 7 \cdot 4 \equiv 28 \equiv 1, 4^4 \equiv 4, \dots$$

i.e.

 $4, 7, 1, 4, 7, 1, 4, 7, 1, \ldots$

But $6 \cdot 4 \equiv 24 \equiv 6 \mod 9$, $6 \cdot 7 \equiv 42 \equiv 6 \mod 9$ and $6 \cdot 1 \equiv 6 \mod 9$. Therefore, $6 \cdot 4^n \equiv 6 \mod 9$ for all n > 1.

Another way: $6 \cdot 4^n \equiv 6 \mod 9$ if and only if $2 \cdot 4^n \equiv 2 \mod 3$. But this last congruence is obvious because $4 \equiv 1 \mod 3$ and then $4^n \equiv 1 \mod 3$ for all $n \ge 1$.

Question 11. Find the least nonnegative residues.

(a) $5^{18} \mod 7$.

- (b) $68^{105} \mod 13$.
- (c) $6^{47} \mod 12$.

Solution:

- 1. $5^{18} \equiv (-2)^{18} \equiv 2^{18} \mod 7$. Notice as well that $2^3 \equiv 8 \equiv 1 \mod 7$. Thus $2^{18} \equiv (2^3)^6 \equiv 1^6 \equiv 1 \mod 7$. Hence $5^{18} \equiv 1 \mod 7$.
- 2. $68^{105} \equiv 3^{105} \mod 13$. Notice that $3^3 \equiv 27 \equiv 1 \mod 13$. Thus, $3^{105} \equiv (3^3)^{35} \equiv 1^{35} \equiv 1 \mod 13$.
- 3. Notice that $6^2 \equiv 36 \equiv 0 \mod 12$. Thus $6^{47} \equiv 6^2 \cdot 6^{45} \equiv 0 \cdot 6^{45} \equiv 0 \mod 12$.

Question 12. Show that $5^e + 6^e \equiv 0 \mod 11$ for all odd numbers *e*.

Solution:

 $5^e + 6^e \equiv 5^e + (-5)^e \equiv 5^e - 5^e \equiv 0 \mod 11$. Notice that $(-5)^e = -5^e$ because *e* is odd.

Question 13. Prove the part (a), then find the least nonnegative residue modulo 7, 11 and 13 in parts (b), (c) and (d).

- (a) A number N is congruent modulo 7, 11, or 13, to the alternating sum of its digits in base 1000. (For example, $123456789 \equiv 789 456 + 123 \equiv 456 \mod 7$, 11, or 13.)
- (b) 11233456,
- (c) 58473625,
- (d) 100,000,000,000,000,001.

Solution:

1. Let us write N in base 1000, as follows:

 $N = a_n \cdot 1000^n + a_{n-1} \cdot 1000^{n-1} + \dots + a_2 \cdot 1000^2 + a_1 \cdot 1000 + a_0,$

where each digit $0 \le a_i \le 999$. Note that $1000 = 1001 - 1 = 7 \cdot 11 \cdot 13 - 1$. Therefore, $1000 \equiv -1 \mod 7$, 11 and 13. Hence,

$$N \equiv a_n(-1)^n + a_{n-1} \cdot (-1)^{n-1} + \dots + a_2(-1)^2 + a_1(-1) + a_0 \mod 7, \ 11, \ \text{or} \ 13.$$

- 2. $11233456 \equiv 11 233 + 456 \equiv 234 \mod 7$, 11 or 13. And $234 \equiv 3 \mod 7$, $234 \equiv 2 3 + 4 \equiv 3 \mod 11$ and $234 \equiv 0 \mod 13$.
- 3. Similarly, $58473625 \equiv 210 \equiv 0 \mod 7$, $\equiv 1 \mod 11$ and $\equiv 2 \mod 13$.
- 4. Similarly, $100,000,000,000,000,001 \equiv 001 100 \equiv -99 \equiv 6 \mod 7$, $\equiv 0 \mod 11$ and $\equiv 5 \mod 13$.

Question 14. Find divisibility tests for numbers in base 34 for 2, 3, 5, 7, 11 and 17.

Solution:

A number in base 34 looks like this:

$$N = a_n \cdot 34^n + a_{n-1} \cdot 34^{n-1} + \dots + a_1 \cdot 34 + a_0$$

where each coefficient a_i is a number $0 \le a_i \le 33$. Therefore, in this base:

1. N is divisible by 2 if a_0 is divisible by 2.

- 2. N is divisible by 3 if the sum of all coefficients a_i is divisible by 3 (because $34 \equiv 1 \mod 3$).
- 3. N is divisible by 5 if the alternating sum of the coefficients a_i is divisible by 5 (because $34 \equiv -1 \mod 5$).

- 4. N is divisible by 7 if the alternating sum of the coefficients a_i is divisible by 7 (because $34 \equiv -1 \mod 7$).
- 5. N is divisible by 11 if the sum of all coefficients a_i is divisible by 11 (because $34 \equiv 1 \mod 11$).
- 6. N is divisible by 17 if a_0 is 0 or 17 (because $N \equiv a_0 \mod 17$ and $0 \le a_0 \le 33$, so $a_0 \equiv 0 \mod 17$ iff $a_0 = 0$ or 17).

Question 15. Show that $2^{560} \equiv 1 \mod{561}$.

Solution:

The best trick here is to factor $561 = 3 \cdot 11 \cdot 17$. Let's calculate first $2^{560} \mod 3, 11 \mod 17$.

- $2^{560} \equiv (-1)^{560} \equiv 1 \mod 3$, thus 3 divides $2^{560} 1$.
- Modulo 11 one can verify that $2^{10} \equiv 1 \mod 11$. Thus $2^{560} \equiv (2^{10})^{56} \equiv 1 \mod 11$. Thus, 11 divides $2^{560} 1$.
- Also, $2^8 \equiv 1 \mod 17$ and $560 = 8 \cdot 70$. Thus, $2^{560} \equiv (2^8)^7 0 \equiv 1 \mod 17$. Hence, 17 divides $2^{560} 1$.

Therefore, 3, 11 and 17 divide $2^{560} - 1$. Since these are distinct primes, their product also divides it. Hence 561 divides $2^{560} - 1$ and, consequently, $2^{560} \equiv 1 \mod 561$.