God made the integers, all else is the work of man. (Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.). - Leopold Kronecker

Question 1. Prove that there are infinitely many primes of the form $4 n-1$.

Solution:

First of all, notice that every natural number is either $0,1,2 \operatorname{or} 3 \bmod 4$. No prime number can be 0 modulo 4 because it would be divisible by 4 . Also, every $n \equiv 2 \bmod 4$ is an even number (why?) so the only prime $p \equiv 2 \bmod 4$ is $p=2$. Thus, every odd prime is either $p \equiv 1$ or $3 \bmod 4$. Suppose for a contradiction that there are only finitely many primes congruent to $3 \bmod 4$ and call them p_{1}, \ldots, p_{n}. Let us consider the number:

$$
N=4 p_{1} p_{2} \cdots p_{n}-1 .
$$

Notice that $N \equiv-1 \equiv 3 \bmod 4$. Therefore N is odd and not divisible by 2 . By the Fundamental Theorem of Arithmetic, N has a prime factorization into primes:

$$
N=4 p_{1} p_{2} \cdots p_{n}-1=q_{1} q_{2} \cdot q_{r}
$$

for some (odd) primes $q_{1}, q_{2}, \ldots, q_{r}$. Suppose that all q_{i} are $\equiv 1 \bmod 4$. Then:

$$
N=q_{1} q_{2} \cdot q_{r} \equiv 1 \cdot 1 \cdots 1 \equiv 1 \quad \bmod 4
$$

but we proved above that $N \equiv 3 \bmod 4$. Therefore, it must be the case that at least one prime q_{i}, divisor of N, is $\equiv 3 \bmod 4$. But then, q_{i} must be one of the primes p_{1}, \ldots, p_{n}. Hence q_{i} divides N, and also divides $p_{1} p_{2} \cdots p_{n}$, and hence, q_{i} divides $N-4 p_{1} p_{2} \cdots p_{n}=-1$, but this is clearly impossible.

Hence we have reached a contradiction, and there cannot be just finitely many primes of the form $4 n-1$ (i.e. $\equiv 3 \bmod 4$).

Question 2. Prove that there are infinitely many primes of the form $6 n-1$.

Solution:

First of all, notice that every natural number is either $0,1,2,3,4$ or $5 \bmod 6$. No prime number can be 0 modulo 6 because it would be divisible by 6 . Also, every $n \equiv 2 \bmod 6$ is an even number (why?) so the only prime $p \equiv 2 \bmod 6$ is $p=2$, and every $n \equiv 3 \bmod 6$ is a multiple of 3 (why?) so the only prime $p \equiv 3 \bmod 6$ is $p=3$. Thus, every prime >3 is either $p \equiv 1$ or $5 \bmod 6$. Suppose for a contradiction that there are only finitely many primes congruent to $5 \bmod 6$ and call them p_{1}, \ldots, p_{n}. Let us consider the number:

$$
N=6 p_{1} p_{2} \cdots p_{n}-1
$$

Notice that $N \equiv-1 \equiv 5 \bmod 6$. Therefore N is odd and not divisible by 2 or 3 . By the Fundamental Theorem of Arithmetic, N has a prime factorization into primes:

$$
N=6 p_{1} p_{2} \cdots p_{n}-1=q_{1} q_{2} \cdot q_{r}
$$

for some (odd) primes $q_{1}, q_{2}, \ldots, q_{r}$. Suppose that all q_{i} are $\equiv 1 \bmod 6$. Then:

$$
N=q_{1} q_{2} \cdot q_{r} \equiv 1 \cdot 1 \cdots 1 \equiv 1 \quad \bmod 6
$$

but we proved above that $N \equiv 5 \bmod 6$. Therefore, it must be the case that at least one prime q_{i}, divisor of N, is $\equiv 5 \bmod 6$. But then, q_{i} must be one of the primes p_{1}, \ldots, p_{n}. Hence q_{i} divides N, and also divides $p_{1} p_{2} \cdots p_{n}$, and hence, q_{i} divides $N-6 p_{1} p_{2} \cdots p_{n}=-1$, but this is clearly impossible.

Hence we have reached a contradiction, and there cannot be just finitely many primes of the form $6 n-1$ (i.e. $\equiv 5 \bmod 6$).

Question 3. Let $a_{1}=2$ and $a_{n+1}=a_{n}\left(a_{n}-1\right)+1$. Prove that $a_{n+1}=a_{1} a_{2} \cdots a_{n}+1$. Prove that for all $m \neq n$, the numbers a_{m} and a_{n} are relatively prime.

Solution:

We prove the first equality by induction. First, we deal with the base case $n=2$:

$$
a_{2}=a_{1}\left(a_{1}-1\right)+1=2(2-1)+1=2 \cdot 1+1=3=a_{1}+1
$$

Now suppose that the equality $a_{n}=a_{1} a_{2} \cdots a_{n-1}+1$ holds (or equivalently, $a_{n}-1=$ $a_{1} a_{2} \cdots a_{n-1}$), and we want to prove it for $n+1$. We see that:

$$
a_{n+1}=a_{n}\left(a_{n}-1\right)+1=a_{n}\left(a_{1} a_{2} \cdots a_{n-1}\right)+1=a_{1} a_{2} \cdots a_{n}+1
$$

as claimed. Thus, by the Principle of Mathematical Induction, the equality holds for all $n \geq 2$.

In order to prove that for all $m \neq n$, the numbers a_{m} and a_{n} are relatively prime, we shall prove that for all $n \geq 2, a_{n}$ is relatively prime to all a_{m} with $1 \leq m<n$. Indeed, if d divides a_{n} and a_{m} then d also divides

$$
a_{n}-a_{1} a_{2} \cdots a_{n-1}=1
$$

and therefore $d= \pm 1$. Hence, the GCD of a_{m} and a_{n} must be 1 .

Question 4. Prove that for any $n \geq 1$ there are n consecutive composite numbers.

Solution:

Let $n \geq 1$ and consider the number $N=(n+1)!+2$, and the n consecutive numbers

$$
N, N+1, N+2, \ldots, N+(n-1)
$$

Notice that $N=(n+1)!+2$ is divisible by 2 (and larger than 2 , so it must be composite), $N+1=(n+1)!+3$ is divisible by 3 (and larger than 3), and $N+i=(n+1)!+2+i$ is divisible by $2+i$, as long as $0 \leq i \leq n-1$.

Question 5. Prove that for any $n \geq 2$ there is a prime p with $n<p \leq n!+1$.

Solution:

If $n!+1$ is prime, then pick $p=n!+1$. Otherwise, if $n!+1$ is composite, then it has a prime factor q with $1<q<n!+1$. If $n<q<n!+1$ then pick $p=q$. Otherwise, if $1<q \leq n$ then q divides $n!+1$ but it also divides $n!$ and so q would divide 1. That's impossible, so we must have $n<q \leq n!+1$ and we can pick $p=q$.

Question 6. Find the least non-negative residues.
(a) $365 \bmod 5$.
(b) $-3122 \bmod 3$.
(c) $3122082546 \bmod 10$.
(d) $-2445678 \bmod 10$.

Solution:

Show your work!

1. $365 \equiv 0 \bmod 5$ because $365=5 \cdot 73+0$.
2. $-3122 \equiv 1 \bmod 3$ because $-3122=3(-1041)+1$.
3. $3122082546 \equiv 6 \bmod 10$ because $3122082546=312208254 \cdot 10+6$.
4. $-2445678 \equiv-8 \equiv 2 \bmod 10$ because $-2445678=(-244568) \cdot 10+2$.

Question 7. Find one integer $a \in \mathbb{Z}$ that satisfies, simultaneously, both congruences $a \equiv 5$ $\bmod 8$ and $a \equiv 3 \bmod 7$.

Solution:

If $a \equiv 5 \bmod 8$ then $a=5+8 x$ for some integer x. If $a \equiv 3 \bmod 7$ then $5+8 x=3+7 y$ for some integer y. Thus $8 x-7 y=-2$. The equation $8 x-7 y=1$ has a solution $x=y=1$. Thus $8 x-7 y=-2$ has a solution $x=y=-2$. Thus $a=5+8(-2)=5-16=-11$ works. (Check your work: $a=-11 \equiv-3 \equiv 5 \bmod 8$ and $a=-11 \equiv-4 \equiv 3 \bmod 7$, so it does work).

Question 8. Show that if $n>4$ is not prime then $(n-1)!\equiv 0 \bmod n$.

Solution:

Suppose n is composite. Then there are a, b with $n=a b$ and $1<a, b<n$.
If $1<a<b<n$ then:

$$
(n-1)!=1 \cdot 2 \cdot 3 \cdots a \cdots b \cdots(n-1)
$$

so clearly $(n-1)$! is divisible by $a b=n$ and it must be $\equiv 0 \bmod n$.
If $a=b$, i.e. $n=a^{2}$, as long as $a>1$ we have:

$$
(n-1)!=1 \cdot 2 \cdot 3 \cdots a \cdots 2 a \cdots 3 a \cdots(a-1) a \cdots\left(a^{2}-1\right)
$$

where $a^{2}-1=n-1$. Thus, $(n-1)$! is divisible by (at least) $a \cdot 2 a=2 a^{2}$, and therefore n divides $(n-1)$!.

Question 9. Prove the following properties of congruences:
(a) If $a \equiv b \bmod n$ then $k a \equiv k b \bmod n$.
(b) If $a \equiv b \bmod n$ and $a^{\prime} \equiv b^{\prime} \bmod n$ then $a+a^{\prime} \equiv b+b^{\prime} \bmod n$.

Solution:

1. Suppose $a \equiv b \bmod n$. That means n divides $a-b$, i.e. there exists d such that $a-b=d n$. Thus, also, $k a-k b=k d n$ which means that n divides $k a-k b$, or equivalently $k a \equiv k b \bmod n$.
2. Suppose $a \equiv b \bmod n$ and $a^{\prime} \equiv b^{\prime} \bmod n$. Then there are integers d and d^{\prime} such that $a-b=d n$ and $a^{\prime}-b^{\prime}=d^{\prime} n$. Thus:

$$
a+a^{\prime}-\left(b+b^{\prime}\right)=(a-b)+\left(a^{\prime}-b^{\prime}\right)=d n+d^{\prime} n=\left(d+d^{\prime}\right) n
$$

and so, n divides $a+a^{\prime}-\left(b+b^{\prime}\right)$ which means that $a+a^{\prime} \equiv b+b^{\prime} \bmod n$.

Question 10. Use congruences to show that $6 \cdot 4^{n} \equiv 6 \bmod 9$ for any $n \geq 0$.

Solution:

The powers of 4 modulo 9 are

$$
4,4^{2} \equiv 16 \equiv 7,4^{3} \equiv 7 \cdot 4 \equiv 28 \equiv 1,4^{4} \equiv 4, \ldots
$$

i.e.

$$
4,7,1,4,7,1,4,7,1, \ldots
$$

But $6 \cdot 4 \equiv 24 \equiv 6 \bmod 9,6 \cdot 7 \equiv 42 \equiv 6 \bmod 9$ and $6 \cdot 1 \equiv 6 \bmod 9$. Therefore, $6 \cdot 4^{n} \equiv 6$ $\bmod 9$ for all $n \geq 1$.

Another way: $6 \cdot 4^{n} \equiv 6 \bmod 9$ if and only if $2 \cdot 4^{n} \equiv 2 \bmod 3$. But this last congruence is obvious because $4 \equiv 1 \bmod 3$ and then $4^{n} \equiv 1 \bmod 3$ for all $n \geq 1$.

Question 11. Find the least nonnegative residues.
(a) $5^{18} \bmod 7$.
(b) $68^{105} \bmod 13$.
(c) $6^{47} \bmod 12$.

Solution:

1. $5^{18} \equiv(-2)^{18} \equiv 2^{18} \bmod 7$. Notice as well that $2^{3} \equiv 8 \equiv 1 \bmod 7$. Thus $2^{18} \equiv$ $\left(2^{3}\right)^{6} \equiv 1^{6} \equiv 1 \bmod 7$. Hence $5^{18} \equiv 1 \bmod 7$.
2. $68^{105} \equiv 3^{105} \bmod 13$. Notice that $3^{3} \equiv 27 \equiv 1 \bmod 13$. Thus, $3^{105} \equiv\left(3^{3}\right)^{35} \equiv 1^{35} \equiv$ $1 \bmod 13$.
3. Notice that $6^{2} \equiv 36 \equiv 0 \bmod 12$. Thus $6^{47} \equiv 6^{2} \cdot 6^{45} \equiv 0 \cdot 6^{45} \equiv 0 \bmod 12$.

Question 12. Show that $5^{e}+6^{e} \equiv 0 \bmod 11$ for all odd numbers e.

Solution:

$5^{e}+6^{e} \equiv 5^{e}+(-5)^{e} \equiv 5^{e}-5^{e} \equiv 0 \bmod 11$. Notice that $(-5)^{e}=-5^{e}$ because e is odd.

Question 13. Prove the part (a), then find the least nonnegative residue modulo 7,11 and 13 in parts (b), (c) and (d).
(a) A number N is congruent modulo 7,11 , or 13 , to the alternating sum of its digits in base 1000. (For example, $123456789 \equiv 789-456+123 \equiv 456 \bmod 7,11$, or 13 .)
(b) 11233456,
(c) 58473625,
(d) $100,000,000,000,000,001$.

Solution:

1. Let us write N in base 1000, as follows:

$$
N=a_{n} \cdot 1000^{n}+a_{n-1} \cdot 1000^{n-1}+\cdots+a_{2} \cdot 1000^{2}+a_{1} \cdot 1000+a_{0}
$$

where each digit $0 \leq a_{i} \leq 999$. Note that $1000=1001-1=7 \cdot 11 \cdot 13-1$. Therefore, $1000 \equiv-1 \bmod 7,11$ and 13. Hence,

$$
N \equiv a_{n}(-1)^{n}+a_{n-1} \cdot(-1)^{n-1}+\cdot+a_{2}(-1)^{2}+a_{1}(-1)+a_{0} \bmod 7,11, \text { or } 13
$$

2. $11233456 \equiv 11-233+456 \equiv 234 \bmod 7,11$ or 13 . And $234 \equiv 3 \bmod 7,234 \equiv$ $2-3+4 \equiv 3 \bmod 11$ and $234 \equiv 0 \bmod 13$.
3. Similarly, $58473625 \equiv 210 \equiv 0 \bmod 7, \equiv 1 \bmod 11$ and $\equiv 2 \bmod 13$.
4. Similarly, $100,000,000,000,000,001 \equiv 001-100 \equiv-99 \equiv 6 \bmod 7, \equiv 0 \bmod 11$ and $\equiv 5 \bmod 13$.

Question 14. Find divisibility tests for numbers in base 34 for $2,3,5,7,11$ and 17 .

Solution:

A number in base 34 looks like this:

$$
N=a_{n} \cdot 34^{n}+a_{n-1} \cdot 34^{n-1}+\cdots+a_{1} \cdot 34+a_{0}
$$

where each coefficient a_{i} is a number $0 \leq a_{i} \leq 33$. Therefore, in this base:

1. N is divisible by 2 if a_{0} is divisible by 2 .
2. N is divisible by 3 if the sum of all coefficients a_{i} is divisible by 3 (because $34 \equiv 1$ $\bmod 3)$.
3. N is divisible by 5 if the alternating sum of the coefficients a_{i} is divisible by 5 (because $34 \equiv-1 \bmod 5)$.
4. N is divisible by 7 if the alternating sum of the coefficients a_{i} is divisible by 7 (because $34 \equiv-1 \bmod 7$).
5. N is divisible by 11 if the sum of all coefficients a_{i} is divisible by 11 (because $34 \equiv 1$ $\bmod 11)$.
6. N is divisible by 17 if a_{0} is 0 or 17 (because $N \equiv a_{0} \bmod 17$ and $0 \leq a_{0} \leq 33$, so $a_{0} \equiv 0 \bmod 17$ iff $a_{0}=0$ or 17).

Question 15. Show that $2^{560} \equiv 1 \bmod 561$.

Solution:

The best trick here is to factor $561=3 \cdot 11 \cdot 17$. Let's calculate first $2^{560} \bmod 3,11$ and 17 .

- $2^{560} \equiv(-1)^{560} \equiv 1 \bmod 3$, thus 3 divides $2^{560}-1$.
- Modulo 11 one can verify that $2^{10} \equiv 1 \bmod 11$. Thus $2^{560} \equiv\left(2^{10}\right)^{56} \equiv 1 \bmod 11$. Thus, 11 divides $2^{560}-1$.
- Also, $2^{8} \equiv 1 \bmod 17$ and $560=8 \cdot 70$. Thus, $2^{560} \equiv\left(2^{8}\right)^{7} 0 \equiv 1 \bmod 17$. Hence, 17 divides $2^{560}-1$.

Therefore, 3,11 and 17 divide $2^{560}-1$. Since these are distinct primes, their product also divides it. Hence 561 divides $2^{560}-1$ and, consequently, $2^{560} \equiv 1 \bmod 561$.

