If the Sun refused to shine,
I don't mind, I don't mind.
If the mountains fell in the sea,
Let it be, it ain't me.
Now, if six turned out to be nine,
Oh I don't mind, I don't mind...
Jimi Hendrix, "If Six Was Nine," from the album Axis: Bold as Love, 1967.

Question 1. If six turned out to be nine...
(a) ... that is, if $6 \equiv 9 \bmod m$, what would the value of $m>1$ be?
(b) Now, if $6 \equiv 69 \bmod m$, what are the possible values for $m>1$?

Question 2. Find the smallest number ≥ 120120 which is divisible by no prime $p<20$, using congruences. (Hint: calculate $120120 \bmod p$, for every prime $p<20$.)

Question 3. Find all $x \in \mathbb{Z}$ that satisfy the following linear congruence, or explain why no integral solutions exist (these are individual congruences, and not a system!).
(a) $6 x \equiv 9 \bmod 11$,
(b) $6 x \equiv 11 \bmod 9$,
(c) $6 x \equiv 9 \bmod 15$.

Question 4. Solve the following systems:

$$
\left\{\begin{array}{l}
x \equiv 2 \bmod 7 \\
x \equiv 4 \bmod 8 \\
x \equiv 3 \bmod 9
\end{array}, \quad\left\{\begin{array}{l}
z \equiv 5 \bmod 7 \\
z \equiv 2 \bmod 8 \\
z \equiv 1 \bmod 9
\end{array}, \quad\left\{\begin{array}{l}
y \equiv 1 \bmod 7 \\
y \equiv 3 \bmod 8 \\
y \equiv 6 \bmod 9
\end{array}\right.\right.\right.
$$

Question 5. Solve the following systems:

$$
\left\{\begin{array}{l}
x \equiv-3 \bmod 11 \\
x \equiv 103 \bmod 13 \\
x \equiv 3 \bmod 15
\end{array}, \quad\left\{\begin{array}{l}
y \equiv 25 \bmod 11 \\
y \equiv 35 \bmod 13 \\
y \equiv 31 \bmod 15
\end{array}\right.\right.
$$

Question 6. Solve:

$$
\begin{cases}x \equiv 1 & \bmod 2 \\ x \equiv 2 & \bmod 5 \\ x \equiv 5 & \bmod 6 \\ x \equiv 5 & \bmod 12\end{cases}
$$

Question 7. A prime p is a safe prime if $p=2 q+1$ where q is also prime. The prime q, in turn, is called a Sophie Germain prime. For instance, $p=5=2 \cdot 2+1$ and $p=7=2 \cdot 3+1$ are the first two safe primes, and $q=2$ and $q=3$ are the first two Sophie Germain primes. Suppose that $p>7$ is a safe prime and prove the following.
(a) Show that $p \equiv 2 \bmod 3$.
(b) Show that $p \equiv 3 \bmod 4$.
(c) Show that if $p>11$, then $p \not \equiv 1 \bmod 5$.
(d) Use the previous congruences to show that $p \equiv 23,47$ or $59 \bmod 60$.
(e) Use (d) to find 10 safe primes larger than 1000.

Question 8.

(a) Find all solutions for the congruence $x^{2} \equiv 1 \bmod 8$.
(b) Find all solutions for $x^{2} \equiv 1 \bmod 5$.
(c) Use (a) and (b) and the Chinese remainder theorem to find all solutions for $x^{2} \equiv 1 \bmod 40$.

Question 9.

(a) Find all the congruence classes modulo 35 that are zero-divisors in $\mathbb{Z} / 35 \mathbb{Z}$.
(b) Find all the congruence classes modulo 35 that are units in $\mathbb{Z} / 35 \mathbb{Z}$.
(c) For each unit modulo 35, find its multiplicative inverse.
(d) Repeat parts (a), (b) and (c) for the ring $\mathbb{Z} / 11 \mathbb{Z}$.

Question 10.
(a) Justify the following congruence modulo 11:

$$
\begin{aligned}
10! & \equiv 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \\
& \equiv 1 \cdot 2 \cdot 2^{-1} \cdot 3 \cdot 3^{-1} \cdot 5 \cdot 5^{-1} \cdot 7 \cdot 7^{-1} \cdot 10 \\
& \equiv 1 \cdot 10 \equiv-1 \bmod 11
\end{aligned}
$$

(b) Generalize the formula in (a) to prove that if p is any prime then $(p-1)$! $\equiv-1 \bmod p$.

