Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.- Leonhard Euler.

Please note:

1. Calculators are not allowed in the exam.
2. You may assume the following axioms and theorems:
(a) Axiom: The natural numbers \mathbb{N} satisfies the Well Ordering Principle, i.e. every non-empty subset of natural numbers contains a least element.
(b) Theorem: Let a, b, c be integers. The linear equation $a x+b y=c$ has a solution if and only if $\operatorname{gcd}(a, b)$ divides c.
3. You must provide full explanations for all your answers. You must include your work.

Theory Question 1. Prove that if p is prime and $p \mid a b$ then either $p \mid a$ or $p \mid b$. Explain why the previous statement can be re-written as follows: if p is a prime and $a b \equiv 0 \bmod p$ then $a \equiv 0 \bmod p$ or $b \equiv 0 \bmod p$.

Solution:

Suppose p divides $a b$ but p does not divide a. Then $\operatorname{gcd}(p, a)=1$ (otherwise, there is $d>1$ such that $d \mid p$ and $d \mid a$, and since p is prime $d=p$ but p does not divide a). By the theorem above, there exist $x, y \in \mathbb{Z}$ such that

$$
a x+p y=1 .
$$

Multiplying this equation by b gives:

$$
a b x+p b y=b .
$$

Since p divides $a b$ and p obviously divides $p b$, then p divides any linear combination of $a b$ and $p b$. Hence p divides $b=(a b) x+(p b) y$.

The rest of the problem follows from the fact that $p \mid a$ if and only if $a \equiv 0 \bmod p$.

Theory Question 2. Prove the existence part of the Fundamental Theorem of Arithmetic, i.e. every natural number $n>1$ can be written as a product of primes.

Solution:

See the book or your class notes.

Theory Question 3. Prove the uniqueness part of the Fundamental Theorem of Arithmetic, i.e. every natural number $n>1$ can be written uniquely as a product of primes, up to a reordering of the prime-power factors (you may assume Theory Question 2).

Solution:

See the book or your class notes.

Theory Question 4. Prove Euclid's theorem on the infinitude of primes, i.e. prove that there exist infinitely many prime numbers.

Solution:

See the book or your class notes.

Question 1. Use Euclid's algorithm to:

1. Find the greatest common divisor of 13 and 50 .
2. Find all solutions of the linear diophantine equation $13 x+50 y=2$.
3. Find the multiplicative inverse of 13 modulo 50 . Find the multiplicative inverse of 50 modulo 13.
4. Find all solutions to $26 x \equiv 4 \bmod 100$.

Solution:

1. $50=13 \cdot 3+11,13=11+2,11=2 \cdot 5+1$. Thus, the gcd is 1.
2. One particular solution is found by reversing Euclid's algorithm (and then multiplying through by 2). In particular, $13 \cdot 4-50=2$. By a theorem in class, since $\operatorname{gcd}(50,13)=$ 1 , all the solutions of $13 x+50 y=2$ are given by:

$$
x=4+50 t, \quad y=-1-13 t, \quad \text { for all } t \in \mathbb{Z}
$$

3. A solution to the equation $13 x+50 y=1$ is given by $x=27$ and $y=-7$. The equation $13 \cdot 27-7 \cdot 50=1$ implies that

$$
13 \cdot 27 \equiv 1 \bmod 50
$$

and so, 27 is a multiplicative inverse of 13 modulo 50 .
4. We first solve $13 x \equiv 2 \bmod 50$. In fact, we have already seen that $13 \cdot 4-50=2$. Thus $x \equiv 4 \bmod 50$ is the unique solution. Thus, all solutions to $26 x \equiv 4 \bmod 100$ are $x=4$ and $x=4+50=54$ modulo 100 (again by a theorem proved in class).

Question 2. Prove that the equation $x^{2}-7 y^{3}+21 z^{5}=3$ has no solution with x, y, z in \mathbb{Z} (Hint: Calculate all possible squares modulo 7).

Solution:

Since the set $\{0,1,2,3,4,5,6\}$ is a complete residue system modulo 7 and since $a^{2}=(-a)^{2}$, we can conclude that $\left\{0^{2}, 1^{2}, 2^{2}, 3^{2}\right\}=\{0,1,4,2\}$ is a complete system of squares modulo 7 (i.e. the squares are congruent to either $0,1,2$ or 4 modulo 7).

Now, suppose that there are integers x, y, z such that $x^{2}-7 y^{3}+21 z^{5}=3$. Then:

$$
3=x^{2}-7 y^{3}+21 z^{5} \equiv x^{2} \bmod 7
$$

but this, $x^{2} \equiv 3 \bmod 7$ is impossible by our previous remark.

Question 3. Show that 257 divides $100 \cdot 2^{25}-57=3355443143$.

Solution:

Notice that $2^{8}=256 \equiv(-1) \bmod 257$. Thus, $2^{25}=\left(2^{8}\right)^{3} \cdot 2 \equiv-2 \bmod 257$. Finally:

$$
100 \cdot 2^{25}-57 \equiv-200-57 \equiv-257 \equiv 0 \bmod 257
$$

Question 4. What time does a clock read 100 hours after it reads 2 o'clock? If the time is now 2PM, after 100 hours, will it be in the PM or in the AM?

Solution:

We need to find the remainder of 102 modulo 12

$$
102=12 \cdot 8+6, \quad \text { and so } \quad 102 \equiv 6 \bmod 12
$$

Thus, the time is 6 o'clock. By the way, is that in the PM or AM? Suppose the time now is 2 PM (which is $14: 00$, the 14 th hour of the day). Then we need to find the remainder of $114=100+14$ modulo 24 :

$$
114=24 \cdot 4+18, \quad \text { and so } \quad 114 \equiv 18 \bmod 24
$$

and the time is 6 PM .

Question 5. Show that $2^{2^{n}}+5$ is composite for every positive integer n.

Solution:

First, we try a few numbers. For $n=1,2^{2}+5=9=3 \cdot 3$. For $n=2,2^{4}+5=21=3 \cdot 7$. For $n=3,2^{8}+5=261$ which is divisible by 3 . Let us prove that every number $2^{2^{n}}+5$ is divisible by 3 and therefore composite. Since $2^{2} \equiv 1 \bmod 3$, we also have $2^{2^{n}}=\left(2^{2}\right)^{2^{n-1}} \equiv 1 \bmod 3$ for all $n>0$. Hence:

$$
2^{2^{n}}+5 \equiv 6 \equiv 0 \bmod 3
$$

Question 6. Find the smallest positive integer n such that

$$
n \equiv 7 \bmod 3, \quad n \equiv 5 \bmod 5, \quad n \equiv 3 \bmod 7
$$

Solution:

Simplifying, we need to solve the system:

$$
n \equiv 1 \bmod 3, \quad n \equiv 0 \bmod 5, \quad n \equiv 3 \bmod 7
$$

Since $n \equiv 0 \bmod 5$, then $n=5 a$. Since $n \equiv 1 \bmod 3$ and $n \equiv 3 \bmod 7$ then $n \equiv 10 \bmod 21$ (solve $n=1+3 x=3+7 y$, so $3 x-7 y=2$). Hence, we need to solve:

$$
5 a \equiv 10 \bmod 21
$$

and clearly $a=2$ works. Thus, $n \equiv 10 \bmod 105$ and $n=10$ is the smallest valid solution.

Question 7. A troop of 17 monkeys store their bananas in 11 piles of equal size with a twelfth pile of 6 left over. When they divide the bananas into 17 equal groups, none remain. What is the smallest number of bananas they can have?

Solution:

Let x be the number of bananas. Then:

$$
x \equiv 6 \bmod 11, \quad \text { and } \quad x \equiv 0 \bmod 17 .
$$

Hence, $x=17 a$ for some integer a. Thus, we need to solve $17 a \equiv 6 \bmod 11$ or $17 a+11 b=6$. Clearly, $a=1, b=-1$ work. Thus $a=1$ and $x \equiv 17 \bmod 187$. The smallest possible number is 17 .

Question 8. The seven digit number $n=72 x 20 y 2$, where x and y are digits, is divisible by 72 . What are the possibilities for x and y ?

Solution:

Notice that $72=2^{3} \cdot 3^{2}$. Thus, 8 divides n and so 8 divides the three last digits $0 y 2=y 2$. The only two digit numbers divisible by 8 and ending in 2 are 32 or 72 , so $y=3$ or 7 .

The number n is also divisible by 9 , thus the sum of its digits $7+2+x+2+0+y+2=$ $x+y+13$ is a multiple of 9 . So $x+y+4$ is a multiple of 9 . If $y=3$ then $x+7$ must be a multiple of 9 , and the only possibility is $x=2$. If $y=7$ then $x+11$ must be a multiple of 9 , which implies that $x=7$. Therefore:

$$
n=7222032=72 \cdot 100306, \quad \text { or } \quad n=7272072=72 \cdot 101001 .
$$

Question 9. Show that $36^{100} \equiv 16 \bmod 17$.

Solution:

By the properties of congruences we know that $36^{100} \equiv 2^{100} \bmod 17$ because $36 \equiv 2 \bmod 17$. Moreover, $2^{4} \equiv 16 \equiv-1 \bmod 17$. Therefore:

$$
36^{100} \equiv 2^{100} \equiv\left(2^{4}\right)^{25} \equiv(-1)^{25} \equiv-1 \equiv 16 \bmod 17
$$

Question 10. Show that $42 \mid n^{7}-n$ for all positive n.

Solution:

Note that $42=2 \cdot 3 \cdot 7$. First, notice that if n is even or odd, $n^{7}-n$ will always be even, and so it is divisible by 2 . Also, if $n \equiv 0,1$ or $2 \bmod 3$, it is an easy calculation to check that $n^{7}-n \equiv 0 \bmod 3$. And likewise (although a little more work), one checks that for $n \equiv 0,1,2,3,4,5,6 \bmod 7$ we also get $n^{7}-n \equiv 0 \bmod 7$, and so 7 divides $n^{7}-n$, for all $n \geq 1$.

Thus, since $n^{7} \equiv n \bmod 7$ and $n^{7} \equiv n \bmod 6$ and $\operatorname{gcd}(6,7)=1$, we obtain $n^{7} \equiv n \bmod$ 42 , for all n.

Question 11. Show that $5555^{2222}+2222^{5555}$ is divisible by 7 .

Solution:

Note that $5555+2222=7777 \equiv 0 \bmod 7$. Thus, $5555 \equiv-2222 \bmod 7$ and $2222=2100+$ $122 \equiv 122 \equiv 105+17 \equiv 3 \bmod 7$. One also calculates that $3^{6} \equiv 1 \bmod 7$ and $2222=6 \cdot 370+2$ and $5555=925 \cdot 6+5$. Finally:
$5555^{2222}+2222^{5555} \equiv(-3)^{2222}+3^{5555} \equiv\left((-3)^{6}\right)^{370} \cdot(-3)^{2}+\left(3^{6}\right)^{925} \cdot 3^{5} \equiv 1 \cdot 2+1 \cdot 5 \equiv 0 \bmod 7$.

Question 12. Prove that for any natural number $n \geq 1,3^{6 n}-2^{6 n}$ is divisible by 35 (Hint: work modulo 5 and modulo 7, separately).

Solution:

Let us begin working modulo 5 and 7 separately. One calculates:

$$
3^{6} \equiv 3^{4} \cdot 3^{2} \equiv 9 \equiv 4 \bmod 5, \quad 2^{6} \equiv 2^{2} \equiv 4 \bmod 5, \quad 3^{6} \equiv 2^{6} \equiv 1 \bmod 7
$$

Thus:

$$
3^{6 n}-2^{6 n} \equiv 4^{n}-4^{n} \equiv 0 \bmod 5, \quad 3^{6 n}-2^{6 n} \equiv 1-1 \equiv 0 \bmod 7
$$

Thus, since 5 and 7 are relatively prime, $3^{6 n}-2^{6 n} \equiv 0 \bmod 35$.

Question 13. Find the remainder when 14 ! is divided by 17 .

Solution:

Let us calculate modulo 17:


```
    \equiv 1 , 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot ( - 8 ) \cdot ( - 7 ) \cdot ( - 6 ) \cdot ( - 5 ) \cdot ( - 4 ) \cdot ( - 3 ) \operatorname { m o d } 1 7
```



```
    \equiv \mp@code { 3 \cdot 6 \cdot 8 \cdot ( - 6 ) \cdot ( - 3 ) ~ m o d ~ 1 7 }
    \equiv 8mod 17
```

where, in order, we have used that $2 \cdot(-8) \equiv-16 \equiv 1 \bmod 17$, and $4(-4) \equiv 1 \bmod 17$, and $5 \cdot 7 \equiv(-5)(-7) \equiv 1 \bmod 17$, and $3 \cdot 6 \equiv(-3)(-6) \equiv 1 \bmod 17$.

Question 14. Prove that if n is odd, then n and $n-2$ are relatively prime. (Hint: Use the theorem (b) at the beginning of this document).

Solution:

Suppose n is odd. The numbers n and $n-2$ satisfy a Bezout's identity of the form

$$
n-(n-2)=2
$$

Therefore, by Theorem (b) at the beginning of this document, the GCD of n and $n-2$ divides 2. But it cannot be equal to 2 because n is odd and 2 does not divide n. Thus, the GCD must be 1 .

Question 15. Prove that if $k \geq 1$, the integers $6 k+5$ and $7 k+6$ are relatively prime.

Solution:

The integers $x=7 k+6$ and $y=6 k+5$ satisfy a Bezout's identity of the form $6 x-7 y=1$ because:

$$
6(7 k+6)-7(6 k+5)=36-35=1
$$

Thus, by Theorem (b) above, the GCD of x and y must be 1 .

Question 16. Find all primes p such that $17 p+1$ is a square.

Solution:

Suppose $17 p+1=n^{2}$ for some $n \geq 1$. Then $n^{2}-1=17 p$ and, therefore,

$$
17 p=(n+1)(n-1)
$$

By the Fundamental Theorem of Arithmetic, the prime factorization of $(n+1)(n-1)$ is precisely $17 p$, thus the factor $(n+1)$ is equal to $1, p, 17$ or $17 p$ (and in the last case $n-1=1$, so $n=2$). The cases $n+1=1$ and $n+1=17 p$ are impossible (because, respectively, they imply $n=0$ and $17 p=3$). If $n+1=p$ then $17=n-1$ and $n=18$ so $p=19$. If $n+1=17$ then $n-1=p$ and $n=16$, so $p=15$, which is not a prime, so it is not a valid choice.

Hence the only possible case is $p=19$, so $17 p+1=17 \cdot 19+1=324=18^{2}$.

Question 17. Show that $n(n-1)(2 n-1)$ is divisible by 6 for every $n>0$.

Solution:

We shall prove that $n(n-1)(2 n-1)$ is congruent to 0 modulo 2 and modulo 3 . Thus, we can conclude that $n(n-1)(2 n-1) \equiv 0 \bmod 6$. Indeed, if $n \equiv 0$ or 1 modulo 2 , then $n(n-1) \equiv 0 \bmod 2$.

Also, if $n \equiv 0 \bmod 3$ then $n \equiv 0 \bmod 3$, if $n \equiv 1 \bmod 3$ then $(n-1) \equiv 0 \bmod 3$ and if $n \equiv 2 \bmod 3$ then $(2 n-1) \equiv 0 \bmod 3$. Thus, in all cases $n(n-1)(2 n-1) \equiv 0 \bmod 3$, as desired.

Question 18. Does $3 x \equiv 1 \bmod 18$ have a solution? What about $3 x \equiv 1 \bmod 19$? Determine for which integers $1 \leq a \leq 17$ the equation $a x \equiv 1 \bmod 18$ has solutions. Do the same modulo 19.

Solution:

The congruence $3 x \equiv 1 \bmod 18$ does not have solutions because $\operatorname{gcd}(3,18)$ is not a divisor of 1 . The congruence $3 x \equiv 1 \bmod 19$ does have solutions because $\operatorname{gcd}(3,19)=1$. The equation $a x \equiv 1 \bmod 18$ only has solutions when $\operatorname{gcd}(a, 18)=1$ (find them all). The equation $a x \equiv 1 \bmod 19$ has solutions for any $1 \leq a \leq 18$, because then $\operatorname{gcd}(a, 19)=1$, because 19 is prime.

Question 19. Verify that:

1. The numbers $0,2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}$ are a complete set of representatives modulo 11 .
2. The numbers $0,2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}$ are not a complete set of representatives modulo 7 .

Solution:

Just a number of calculations...

