Highlights of Chapters 4,5,7,8.

Chapter 4: Congruences

- 1. Definition of congruence: $a \equiv b \mod m$ if m|a b.
- 2. Properties of congruences, e.g., if $a \equiv b \mod m$, then $a^k \equiv b^k \mod m$, for all $k \ge 1$.
- 3. Cancellation properties of congruences, e.g., if $ac \equiv bc \mod m$, then $a \equiv b \mod \frac{m}{\gcd(m,c)}$.
- 4. The congruence $ax \equiv b \mod m$ has a solution if and only if ax + my = b has a solution $x, y \in \mathbb{Z}$, if and only if gcd(a, m) divides b.
- 5. Systems of congruences: the Chinese remainder theorem. If gcd(m, n) = 1, then the system $\{x \equiv a \mod m, x \equiv b \mod n\}$ has a unique solution modulo mn, for any integers $a, b \in \mathbb{Z}$.
- 6. Applications of congruences: Divisibility tests, e.g., a number is divisible by 9 if the sum of digits is divisible by 9; check digits.

Chapter 5: Groups, rings and fields

- 1. Definition of congruence classes and the set $\mathbb{Z}/m\mathbb{Z}$.
- 2. Definition of group, ring, field.
- 3. Definition of unit (multiplicative inverse), zero-divisor.
- 4. A congruence a mod m is a unit in $\mathbb{Z}/m\mathbb{Z}$ if gcd(a,m) = 1; a zero-divisor if gcd(a,m) > 1.
- 5. $\mathbb{Z}/p\mathbb{Z}$ is a field if and only if p is prime.
- 6. A polynomial of degree n over $\mathbb{Z}/p\mathbb{Z}$ has at most n roots modulo p, even when counted with multiplicities.

Chapter 7: The theorems of Wilson, Fermat and Euler

- 1. Wilson's theorem: A number p is prime if and only if $(p-1)! \equiv -1 \mod p$.
- 2. Fermat's Last Theorem: the equation $x^n + y^n = z^n$ has no integral solutions when $xyz \neq 0$ and n > 3.
- 3. Fermat's little theorem:
 - If p is a prime, then $n^p \equiv n \mod p$, for all n.
 - (Alternative statement) If p is prime, then $a^{p-1} \equiv 1 \mod p$ whenever gcd(a, p) = 1.
- 4. Euler's phi function: $\varphi(m) = \#(\mathbb{Z}/m\mathbb{Z})^{\times}$.
- 5. Euler's theorem: $a^{\varphi(m)} \equiv 1 \mod m$ whenever gcd(a,m) = 1.
- 6. Properties of Euler's phi function:
 - If p is a prime, then $\varphi(p) = p 1$.
 - If p is a prime and $n \ge 1$, then $\varphi(p^n) = p^{n-1}(p-1)$.
 - If gcd(m, n) = 1, then $\varphi(mn) = \varphi(m)\varphi(n)$.
- 7. If gcd(m,n) = 1, then there is a bijection $\mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ that sends a mod mn to $(a \mod m, a \mod n)$. This bijection sends units to units.

Chapter 8: Order and Primitive Roots

- 1. Definition of order mod m: the multiplicative order of a unit $a \mod m$ is the least natural number $n \ge 1$ such that $a^n \equiv 1 \mod m$.
- 2. If $a^t \equiv 1 \mod m$, then $\operatorname{ord}_m a$ divides t. In particular,
 - The order of a unit modulo p, a prime, always divides p-1.
 - The order of a unit modulo m always divides $\varphi(m)$.
- 3. (Chapter to be continued...)