```
    If the Sun refused to shine,
    I don't mind, I don't mind.
        If the mountains fell in the sea,
            Let it be, it ain't me.
            Now, if six turned out to be nine,
            Oh I don't mind, I don't mind...
Jimi Hendrix, "If Six Was Nine," from the album Axis: Bold as Love, 1967.
```

Question 1. If six turned out to be nine...
(a) \ldots that is, if $6 \equiv 9 \bmod m$, what would the value of $m>1$ be?
(b) Now, if $6 \equiv 69 \bmod m$, what are the possible values for $m>1$?

Solution:

(a) If $6 \equiv 9 \bmod m$, then $9-6=3$ is divisible by m. Thus, we must have $m=3$.
(b) If $6 \equiv 69 \bmod m$, then $69-6=63=3^{2} \cdot 7$ is divisible by m. Thus, m can be any of the positive divisors of 63 . Hence, $m \in\{3,7,9,21,63\}$.

Question 2. Find the smallest number ≥ 120120 which is divisible by no prime $p<20$, using congruences. (Hint: calculate $120120 \bmod p$, for every prime $p<20$.)

Solution:

We begin by calculating the least residue of 120120 modulo every prime <20, i.e. modulo $2,3,5,7,11,13,17$ and 19. Respectively, these congruences are:

$$
120120 \equiv 0,0,0,0,0,0,15,2 .
$$

Notice that all the zeros follow from the divisibility tests that we have learned in class. Therefore, the number $120120+1$ must be congruent to:

$$
120121 \equiv 1,1,1,1,1,1,16,3
$$

modulo $2,3,5,7,11,13,17$ and 19 , respectively. Hence, it is not divisible by any of those primes and it is the least with such property (it is in fact a prime number).

Question 3. Find all $x \in \mathbb{Z}$ that satisfy the following linear congruence, or explain why no integral solutions exist (these are individual congruences, and not a system!).
(a) $6 x \equiv 9 \bmod 11$,
(b) $6 x \equiv 11 \bmod 9$,
(c) $6 x \equiv 9 \bmod 15$.

Solution:

(a) The congruence $6 x \equiv 9 \bmod 11$ has a solution if and only if 11 divides $6 x-9$, if and only if the line $6 x+11 y=9$ has an integral solution (x, y). Since $\operatorname{gcd}(6,11)=1$, we know that there are solutions. Using Euclid on 6 and 11, and solving Bezout's identity, we obtain a formula for all integral solutions

$$
x=7+11 k, y=-3-6 k, \text { for all } k \in \mathbb{Z}
$$

Thus, the solution to the congruence is $x=7+11 k$, for all $k \in \mathbb{Z}$, or equivalently, $x \equiv 7 \bmod 11$.
(b) The congruence $6 x \equiv 11 \bmod 9$ has a solution if and only if the line $6 x+9 y=11$ has an integral solution. However, $\operatorname{gcd}(6,9)=3$ does not divide 11 , so the line has no integral points. Thus, the congruence has no solutions with $x \in \mathbb{Z}$.
(c) The congruence $6 x \equiv 9 \bmod 15$ has a solution if and only if the line $6 x+15 y=9$ has an integral solution. Since $\operatorname{gcd}(6,15)=3$ and 3 divides 9 , we do have solutions. Using Euclid for 6 and 15 and then backwards to solve Bezout's identity, we can find all solutions to $6 x+15 y=3$, and multiplying through by 3 , we can find all solutions to $6 x+15 y=9$. These are given by:

$$
x=4+5 k, y=-1-2 k, \quad \text { for all } k \in \mathbb{Z}
$$

Hence, the solutions to the congruence are the numbers of the form $x=4+5 k$, or equivalently, $x \equiv 4 \bmod 5$.

Question 4. Solve the following systems:

$$
\left\{\begin{array}{l}
x \equiv 2 \bmod 7 \\
x \equiv 4 \bmod 8 \\
x \equiv 3 \bmod 9
\end{array}, \quad\left\{\begin{array}{l}
z \equiv 5 \bmod 7 \\
z \equiv 2 \bmod 8 \\
z \equiv 1 \bmod 9
\end{array}, \quad\left\{\begin{array}{l}
y \equiv 1 \bmod 7 \\
y \equiv 3 \bmod 8 \\
y \equiv 6 \bmod 9
\end{array}\right.\right.\right.
$$

Solution:

We first solve the following easier systems:

$$
\left\{\begin{array}{l}
x_{1} \equiv 1 \bmod 7 \\
x_{1} \equiv 0 \bmod 8 \\
x_{1} \equiv 0 \bmod 9
\end{array}, \quad\left\{\begin{array}{l}
x_{2} \equiv 0 \bmod 7 \\
x_{2} \equiv 1 \bmod 8 \\
x_{2} \equiv 0 \bmod 9
\end{array} \quad, \quad\left\{\begin{array}{l}
x_{3} \equiv 0 \bmod 7 \\
x_{3} \equiv 0 \bmod 8 \\
x_{3} \equiv 1 \bmod 9
\end{array}\right.\right.\right.
$$

Let me know if you need help solving these! The solutions are: $x_{1} \equiv 288 \bmod 504, x_{2} \equiv$ $441 \bmod 504$ and $x_{3} \equiv 280 \bmod 504$. Therefore, now we can solve the original problems:

$$
\begin{aligned}
& x \equiv 2 \cdot x_{1}+4 \cdot x_{2}+3 \cdot x_{3} \equiv 2 \cdot 288+4 \cdot 441+3 \cdot 280 \equiv 156 \bmod 504, \\
& z \equiv 5 \cdot x_{1}+2 \cdot x_{2}+1 \cdot x_{3} \equiv 5 \cdot 288+2 \cdot 441+1 \cdot 280 \equiv 82 \bmod 504, \\
& y \equiv 1 \cdot x_{1}+3 \cdot x_{2}+6 \cdot x_{3} \equiv 1 \cdot 288+3 \cdot 441+6 \cdot 280 \equiv 267 \bmod 504 .
\end{aligned}
$$

Question 5. Solve the following systems:

$$
\left\{\begin{array}{l}
x \equiv-3 \bmod 11 \\
x \equiv 103 \bmod 13 \\
x \equiv 3 \bmod 15
\end{array}, \quad\left\{\begin{array}{l}
y \equiv 25 \bmod 11 \\
y \equiv 35 \bmod 13 \\
y \equiv 31 \bmod 15
\end{array}\right.\right.
$$

Solution:

First, we simplify the systems to:

$$
\left\{\begin{array}{l}
x \equiv 8 \bmod 11 \\
x \equiv 12 \bmod 13 \\
x \equiv 3 \bmod 15
\end{array}, \quad\left\{\begin{array}{l}
y \equiv 3 \bmod 11 \\
y \equiv 9 \bmod 13 \\
y \equiv 1 \bmod 15
\end{array}\right.\right.
$$

Now find solutions to the basic systems:

$$
\left\{\begin{array}{l}
x_{1} \equiv 1 \bmod 11 \\
x_{1} \equiv 0 \bmod 13 \\
x_{1} \equiv 0 \bmod 15
\end{array} \quad, \quad\left\{\begin{array}{l}
x_{2} \equiv 0 \bmod 11 \\
x_{2} \equiv 1 \bmod 13 \\
x_{2} \equiv 0 \bmod 15
\end{array}, \quad\left\{\begin{array}{l}
x_{3} \equiv 0 \bmod 11 \\
x_{3} \equiv 0 \bmod 13 \\
x_{3} \equiv 1 \bmod 15
\end{array}\right.\right.\right.
$$

The solutions are: $x_{1} \equiv 1365 \bmod 2145, x_{2} \equiv 495 \bmod 2145$ and $x_{3} \equiv 286 \bmod 2145$. Thus:

$$
\begin{aligned}
& x \equiv 8 \cdot x_{1}+12 \cdot x_{2}+3 \cdot x_{3} \equiv 8 \cdot 1365+12 \cdot 495+3 \cdot 286 \equiv 558 \bmod 2145, \\
& y \equiv 3 \cdot x_{1}+9 \cdot x_{2}+1 \cdot x_{3} \equiv 3 \cdot 1365+9 \cdot 495+1 \cdot 286 \equiv 256 \bmod 2145
\end{aligned}
$$

Question 6. Solve:

$$
\begin{cases}x \equiv 1 & \bmod 2 \\ x \equiv 2 & \bmod 5 \\ x \equiv 5 & \bmod 6 \\ x \equiv 5 & \bmod 12\end{cases}
$$

Solution:

Be careful! The Chinese Remainder Theorem does not apply directly to this problem because some of the moduli are not relatively prime. However, note that $x \equiv 1 \bmod 2$ and $x \equiv 5 \bmod 6$ are redundant (because if $x \equiv 5 \bmod 6$ then it must be also $\equiv 1 \bmod 2$). Also, $x \equiv 5 \bmod 6$ and $x \equiv 5 \bmod 12$ are redundant, because if $x \equiv 5 \bmod 12$ then it is also $\equiv 5 \bmod 12$. Thus, the original system is equivalent to:

$$
\begin{cases}x \equiv 2 & \bmod 5 \\ x \equiv 5 & \bmod 12\end{cases}
$$

Now the Chinese Remainder Theorem applies, and the solution is $x \equiv 17 \bmod 60$.

Question 7. A prime p is a safe prime if $p=2 q+1$ where q is also prime. The prime q, in turn, is called a Sophie Germain prime. For instance, $p=5=2 \cdot 2+1$ and $p=7=2 \cdot 3+1$ are the first two safe primes, and $q=2$ and $q=3$ are the first two Sophie Germain primes. Suppose that $p>7$ is a safe prime and prove the following.
(a) Show that $p \equiv 2 \bmod 3$.
(b) Show that $p \equiv 3 \bmod 4$.
(c) Show that if $p>11$, then $p \not \equiv 1 \bmod 5$.
(d) Use the previous congruences to show that $p \equiv 23,47$ or $59 \bmod 60$.
(e) Use (d) to find 10 safe primes larger than 1000.

Solution:

(a) $(p \equiv 2 \bmod 3)$. Suppose $p>7$. If $q \equiv 1 \bmod 3$ then p would be $p \equiv 0 \bmod 3$ and therefore not prime. Thus $q \equiv 2 \bmod 3$ and $p \equiv 2 \cdot 2+1 \equiv 2 \bmod 3$.
(b) $(p \equiv 3 \bmod 4)$. Suppose $p>7$. If q is prime then $q \equiv 1$ or $3 \bmod 4$. In both cases $p \equiv 2 \cdot 1+1 \equiv 2 \cdot 3+1 \equiv 3 \bmod 4$.
(c) $(p \not \equiv 1 \bmod 5)$. Suppose $p \equiv 1 \bmod 5$. Since $q>5$ is prime then $q \equiv 1,2,3,4 \bmod 5$ and $2 q+1 \neq 1 \bmod 5$ in any case. Thus $p \neq 1 \bmod 5$.
(d) Therefore, a safeprime must be a prime p which is a solution of the following system:

$$
\left\{\begin{array}{l}
p \equiv 2 \bmod 3 \\
p \equiv 3 \bmod 4 \\
p \equiv 2,3, \text { or } 4 \bmod 5
\end{array}\right.
$$

or equivalently:

$$
\left\{\begin{array}{l}
p \equiv 11 \bmod 12 \\
p \equiv 2 \bmod 5
\end{array}, \quad\left\{\begin{array}{l}
p \equiv 11 \bmod 12 \\
p \equiv 3 \bmod 5
\end{array}, \quad\left\{\begin{array}{l}
p \equiv 11 \bmod 12 \\
p \equiv 4 \bmod 5
\end{array}\right.\right.\right.
$$

Hence: $p \equiv 23,47$ or $59 \bmod 60$.
(e) Hence, to find more safeprimes, look for primes in the congruence classes $p \equiv 23,47$ or $59 \bmod 60$ and then check if they are of the form $p=2 q+1$, i.e., check that p is a prime, and check also that $q=(p-1) / 2$ is a prime. The first few safe primes are $5,7,11,23,47,59,83,107,167,179,227,263,347,359,383,467,479,503,563,587$, $719,839,863,887, ~ 983,1019,1187,1283,1307,1319,1367,1439,1487,1523,1619$, 1823, 1907.

Question 8.

(a) Find all solutions for the congruence $x^{2} \equiv 1 \bmod 8$.
(b) Find all solutions for $x^{2} \equiv 1 \bmod 5$.
(c) Use (a) and (b) and the Chinese remainder theorem to find all solutions for $x^{2} \equiv 1 \bmod 40$.

Solution:

First, note that $40=8 \cdot 5$. We want to solve $x^{2} \equiv 1 \bmod 40$, so we solve instead:

$$
\left\{\begin{array}{l}
x^{2} \equiv 1 \quad \bmod 8 \\
x^{2} \equiv 1 \quad \bmod 5
\end{array}\right.
$$

This is equivalent to:

$$
\left\{\begin{array}{l}
x \equiv 1,3,5,7 \quad \bmod 8 \\
x \equiv 1,4 \quad \bmod 5
\end{array}\right.
$$

The possible solutions are: $x \equiv 1,9,11,19,21,29,31,39 \bmod 40$.

Question 9.

(a) Find all the congruence classes modulo 35 that are zero-divisors in $\mathbb{Z} / 35 \mathbb{Z}$.
(b) Find all the congruence classes modulo 35 that are units in $\mathbb{Z} / 35 \mathbb{Z}$.
(c) For each unit modulo 35, find its multiplicative inverse.
(d) Repeat parts (a), (b) and (c) for the ring $\mathbb{Z} / 11 \mathbb{Z}$.

Solution:

1. The zero-divisors in $\mathbb{Z} / 35 \mathbb{Z}$ are those congruences $a \bmod 35$ such that $1 \leq a \leq 34$ and $\operatorname{gcd}(a, 35)>1$, i.e., a is divisible by 5 or 7 . Thus, the zero-divisors are

$$
5,7,10,14,15,20,21,25,28,30 \bmod 35
$$

2. The units in $\mathbb{Z} / 35 \mathbb{Z}$ are those congruences $a \bmod 35$ such that $1 \leq a \leq 34$ and $\operatorname{gcd}(a, 35)=1$. Thus, the units are

$$
1,2,3,4,6,8,9,11,12,13,16,17,18,19,22,23,24,26,27,29,31,32,33,34 \bmod 35
$$

Notice that $\varphi(35)=\varphi(5) \varphi(7)=4 \cdot 6=24$.
3. For each unit $a \bmod 35$ listed above, you need to find $a^{-1} \bmod 35$, i.e., find $b \bmod 35$ such that $a \cdot b \equiv 1 \bmod 35$. For instance,

$$
2^{-1} \equiv 18, \quad 3^{-1} \equiv 12, \quad 4^{-1} \equiv 9 \bmod 35
$$

4. Since 11 is prime, $\mathbb{Z} / 11 \mathbb{Z}$ is a field, and there are no zero-divisors. Every non-zero element $1, \ldots, 10 \bmod 11$ is a unit. Find each multiplicative inverse, as above. For instance,

$$
2^{-1} \equiv 6, \quad 3^{-1} \equiv 4, \quad 4^{-1} \equiv 4 \bmod 11
$$

Question 10.

(a) Justify the following congruence modulo 11:

$$
\begin{aligned}
10! & \equiv 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \\
& \equiv 1 \cdot 2 \cdot 2^{-1} \cdot 3 \cdot 3^{-1} \cdot 5 \cdot 5^{-1} \cdot 7 \cdot 7^{-1} \cdot 10 \\
& \equiv 1 \cdot 10 \equiv-1 \bmod 11
\end{aligned}
$$

(b) Generalize the formula in (a) to prove that if p is any prime then $(p-1)!\equiv-1 \bmod p$.

Solution:

Let $p \geq 2$ be a prime. The congruence classes in $U_{p}=\{1,2, \ldots, p-1\}$ are all units in $\mathbb{Z} / p \mathbb{Z}$ because they are all relatively prime to p. First we prove two preliminary results:

1. Every unit in $\mathbb{Z} / p \mathbb{Z}$ has a unique inverse element modulo p. Let u be a unit, thus $u x \equiv 1 \bmod p$ has a solution (because $(u, p)=1$). Let us call the solution v. Thus v is also a unit and it is an inverse for u. Suppose that v^{\prime} is also an inverse, i.e. $u v^{\prime} \equiv 1 \bmod p$. Then:

$$
u v^{\prime} \equiv u v \bmod p
$$

and since u is a unit, we also have that $v^{\prime} \equiv v \bmod p$ and therefore they are the same unit modulo p.
2. The only units u in $\mathbb{Z} / p \mathbb{Z}$ that are their own inverse (i.e. $u \cdot u \equiv 1 \bmod p$) are $u \equiv \pm 1 \bmod p$. To prove this, suppose x is such that $x \cdot x \equiv x^{2} \equiv 1 \bmod p$. Then $x^{2}-1$ is divisible by p and hence p divides $(x-1)(x+1)$. Since p is prime and p divides a product of two factors, it must divide one of the factors, so either p divides $x-1$ or $x+1$. And this is equivalent to $x \equiv 1$ or $x \equiv-1 \bmod p$.

Therefore, every unit has a unique inverse and only ± 1 are their own inverses. This implies that we can arrange the numbers $2,3, \ldots, p-2$ in pairs: $u_{1}, v_{1}, u_{2}, v_{2}, \ldots u_{(p-3) / 2}, v_{(p-3) / 2}$ such that v_{i} is the inverse of u_{i}. Hence:

$$
\begin{aligned}
(p-1)! & \equiv 1 \cdot 2 \cdot 3 \cdots(p-2) \cdot(p-1) \\
& \equiv 1 \cdot u_{1} \cdot v_{1} \cdot u_{2} \cdot v_{2} \cdots u_{(p-3) / 2} \cdot v_{(p-3) / 2} \cdot(p-1) \\
& \equiv 1 \cdot(p-1) \equiv p-1 \equiv-1 \bmod p
\end{aligned}
$$

as claimed.

