
MATH 3240 Introduction to Number Theory Homework 4

If the Sun refused to shine,
I don’t mind, I don’t mind.

If the mountains fell in the sea,
Let it be, it ain’t me.

Now, if six turned out to be nine,
Oh I don’t mind, I don’t mind...

Jimi Hendrix, “If Six Was Nine,” from the album Axis: Bold as Love, 1967.

Question 1. If six turned out to be nine...
(a) ... that is, if 6 ≡ 9 mod m, what would the value of m > 1 be?

(b) Now, if 6 ≡ 69 mod m, what are the possible values for m > 1?

Solution:
(a) If 6 ≡ 9 mod m, then 9− 6 = 3 is divisible by m. Thus, we must have m = 3.

(b) If 6 ≡ 69 mod m, then 69 − 6 = 63 = 32 · 7 is divisible by m. Thus, m can be any of
the positive divisors of 63. Hence, m ∈ {3, 7, 9, 21, 63}.

Question 2. Find the smallest number ≥ 120120 which is divisible by no prime p < 20, using
congruences. (Hint: calculate 120120 mod p, for every prime p < 20.)

Solution:
We begin by calculating the least residue of 120120 modulo every prime < 20, i.e. modulo
2, 3, 5, 7, 11, 13, 17 and 19. Respectively, these congruences are:

120120 ≡ 0, 0, 0, 0, 0, 0, 15, 2.

Notice that all the zeros follow from the divisibility tests that we have learned in class.
Therefore, the number 120120 + 1 must be congruent to:

120121 ≡ 1, 1, 1, 1, 1, 1, 16, 3

modulo 2, 3, 5, 7, 11, 13, 17 and 19, respectively. Hence, it is not divisible by any of those
primes and it is the least with such property (it is in fact a prime number).

Question 3. Find all x ∈ Z that satisfy the following linear congruence, or explain why no
integral solutions exist (these are individual congruences, and not a system!).
(a) 6x ≡ 9 mod 11,

(b) 6x ≡ 11 mod 9,

(c) 6x ≡ 9 mod 15.

Solution:
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(a) The congruence 6x ≡ 9 mod 11 has a solution if and only if 11 divides 6x − 9, if and
only if the line 6x + 11y = 9 has an integral solution (x, y). Since gcd(6, 11) = 1, we
know that there are solutions. Using Euclid on 6 and 11, and solving Bezout’s identity,
we obtain a formula for all integral solutions

x = 7 + 11k, y = −3− 6k, for all k ∈ Z.

Thus, the solution to the congruence is x = 7 + 11k, for all k ∈ Z, or equivalently,
x ≡ 7 mod 11.

(b) The congruence 6x ≡ 11 mod 9 has a solution if and only if the line 6x + 9y = 11
has an integral solution. However, gcd(6, 9) = 3 does not divide 11, so the line has no
integral points. Thus, the congruence has no solutions with x ∈ Z.

(c) The congruence 6x ≡ 9 mod 15 has a solution if and only if the line 6x + 15y = 9
has an integral solution. Since gcd(6, 15) = 3 and 3 divides 9, we do have solutions.
Using Euclid for 6 and 15 and then backwards to solve Bezout’s identity, we can find
all solutions to 6x + 15y = 3, and multiplying through by 3, we can find all solutions
to 6x + 15y = 9. These are given by:

x = 4 + 5k, y = −1− 2k, for all k ∈ Z.

Hence, the solutions to the congruence are the numbers of the form x = 4 + 5k, or
equivalently, x ≡ 4 mod 5.

Question 4. Solve the following systems:
x ≡ 2 mod 7

x ≡ 4 mod 8

x ≡ 3 mod 9

,


z ≡ 5 mod 7

z ≡ 2 mod 8

z ≡ 1 mod 9

,


y ≡ 1 mod 7

y ≡ 3 mod 8

y ≡ 6 mod 9

.

Solution:
We first solve the following easier systems:

x1 ≡ 1 mod 7

x1 ≡ 0 mod 8

x1 ≡ 0 mod 9

,


x2 ≡ 0 mod 7

x2 ≡ 1 mod 8

x2 ≡ 0 mod 9

,


x3 ≡ 0 mod 7

x3 ≡ 0 mod 8

x3 ≡ 1 mod 9

.

Let me know if you need help solving these! The solutions are: x1 ≡ 288 mod 504, x2 ≡
441 mod 504 and x3 ≡ 280 mod 504. Therefore, now we can solve the original problems:

x ≡ 2 · x1 + 4 · x2 + 3 · x3 ≡ 2 · 288 + 4 · 441 + 3 · 280 ≡ 156 mod 504,

z ≡ 5 · x1 + 2 · x2 + 1 · x3 ≡ 5 · 288 + 2 · 441 + 1 · 280 ≡ 82 mod 504,

y ≡ 1 · x1 + 3 · x2 + 6 · x3 ≡ 1 · 288 + 3 · 441 + 6 · 280 ≡ 267 mod 504.
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Question 5. Solve the following systems:
x ≡ −3 mod 11

x ≡ 103 mod 13

x ≡ 3 mod 15

,


y ≡ 25 mod 11

y ≡ 35 mod 13

y ≡ 31 mod 15

.

Solution:
First, we simplify the systems to:

x ≡ 8 mod 11

x ≡ 12 mod 13

x ≡ 3 mod 15

,


y ≡ 3 mod 11

y ≡ 9 mod 13

y ≡ 1 mod 15

.

Now find solutions to the basic systems:
x1 ≡ 1 mod 11

x1 ≡ 0 mod 13

x1 ≡ 0 mod 15

,


x2 ≡ 0 mod 11

x2 ≡ 1 mod 13

x2 ≡ 0 mod 15

,


x3 ≡ 0 mod 11

x3 ≡ 0 mod 13

x3 ≡ 1 mod 15

.

The solutions are: x1 ≡ 1365 mod 2145, x2 ≡ 495 mod 2145 and x3 ≡ 286 mod 2145. Thus:

x ≡ 8 · x1 + 12 · x2 + 3 · x3 ≡ 8 · 1365 + 12 · 495 + 3 · 286 ≡ 558 mod 2145,

y ≡ 3 · x1 + 9 · x2 + 1 · x3 ≡ 3 · 1365 + 9 · 495 + 1 · 286 ≡ 256 mod 2145.

Question 6. Solve: 
x ≡ 1 mod 2

x ≡ 2 mod 5

x ≡ 5 mod 6

x ≡ 5 mod 12.

Solution:
Be careful! The Chinese Remainder Theorem does not apply directly to this problem
because some of the moduli are not relatively prime. However, note that x ≡ 1 mod 2 and
x ≡ 5 mod 6 are redundant (because if x ≡ 5 mod 6 then it must be also ≡ 1 mod 2).
Also, x ≡ 5 mod 6 and x ≡ 5 mod 12 are redundant, because if x ≡ 5 mod 12 then it is
also ≡ 5 mod 12. Thus, the original system is equivalent to:{

x ≡ 2 mod 5

x ≡ 5 mod 12.

Now the Chinese Remainder Theorem applies, and the solution is x ≡ 17 mod 60.

Question 7. A prime p is a safe prime if p = 2q + 1 where q is also prime. The prime q, in
turn, is called a Sophie Germain prime. For instance, p = 5 = 2 · 2 + 1 and p = 7 = 2 · 3 + 1
are the first two safe primes, and q = 2 and q = 3 are the first two Sophie Germain primes.
Suppose that p > 7 is a safe prime and prove the following.
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(a) Show that p ≡ 2 mod 3.

(b) Show that p ≡ 3 mod 4.

(c) Show that if p > 11, then p 6≡ 1 mod 5.

(d) Use the previous congruences to show that p ≡ 23, 47 or 59 mod 60.

(e) Use (d) to find 10 safe primes larger than 1000.

Solution:
(a) (p ≡ 2 mod 3). Suppose p > 7. If q ≡ 1 mod 3 then p would be p ≡ 0 mod 3 and

therefore not prime. Thus q ≡ 2 mod 3 and p ≡ 2 · 2 + 1 ≡ 2 mod 3.

(b) (p ≡ 3 mod 4). Suppose p > 7. If q is prime then q ≡ 1 or 3 mod 4. In both cases
p ≡ 2 · 1 + 1 ≡ 2 · 3 + 1 ≡ 3 mod 4.

(c) (p 6≡ 1 mod 5). Suppose p ≡ 1 mod 5. Since q > 5 is prime then q ≡ 1, 2, 3, 4 mod 5
and 2q + 1 6= 1 mod 5 in any case. Thus p 6= 1 mod 5.

(d) Therefore, a safeprime must be a prime p which is a solution of the following system:
p ≡ 2 mod 3

p ≡ 3 mod 4

p ≡ 2, 3, or 4 mod 5

or equivalently:{
p ≡ 11 mod 12

p ≡ 2 mod 5
,

{
p ≡ 11 mod 12

p ≡ 3 mod 5
,

{
p ≡ 11 mod 12

p ≡ 4 mod 5

Hence: p ≡ 23, 47 or 59 mod 60.

(e) Hence, to find more safeprimes, look for primes in the congruence classes p ≡ 23, 47
or 59 mod 60 and then check if they are of the form p = 2q + 1, i.e., check that p is a
prime, and check also that q = (p− 1)/2 is a prime. The first few safe primes are

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587,
719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619,
1823, 1907.

Question 8.
(a) Find all solutions for the congruence x2 ≡ 1 mod 8.

(b) Find all solutions for x2 ≡ 1 mod 5.

(c) Use (a) and (b) and the Chinese remainder theorem to find all solutions for x2 ≡ 1 mod 40.

Solution:
First, note that 40 = 8 · 5. We want to solve x2 ≡ 1 mod 40, so we solve instead:{

x2 ≡ 1 mod 8

x2 ≡ 1 mod 5.
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This is equivalent to: {
x ≡ 1, 3, 5, 7 mod 8

x ≡ 1, 4 mod 5.

The possible solutions are: x ≡ 1, 9, 11, 19, 21, 29, 31, 39 mod 40.

Question 9.
(a) Find all the congruence classes modulo 35 that are zero-divisors in Z/35Z.

(b) Find all the congruence classes modulo 35 that are units in Z/35Z.

(c) For each unit modulo 35, find its multiplicative inverse.

(d) Repeat parts (a), (b) and (c) for the ring Z/11Z.

Solution:

1. The zero-divisors in Z/35Z are those congruences a mod 35 such that 1 ≤ a ≤ 34 and
gcd(a, 35) > 1, i.e., a is divisible by 5 or 7. Thus, the zero-divisors are

5, 7, 10, 14, 15, 20, 21, 25, 28, 30 mod 35.

2. The units in Z/35Z are those congruences a mod 35 such that 1 ≤ a ≤ 34 and
gcd(a, 35) = 1. Thus, the units are

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34 mod 35.

Notice that ϕ(35) = ϕ(5)ϕ(7) = 4 · 6 = 24.

3. For each unit a mod 35 listed above, you need to find a−1 mod 35, i.e., find b mod 35
such that a · b ≡ 1 mod 35. For instance,

2−1 ≡ 18, 3−1 ≡ 12, 4−1 ≡ 9 mod 35.

4. Since 11 is prime, Z/11Z is a field, and there are no zero-divisors. Every non-zero
element 1, . . . , 10 mod 11 is a unit. Find each multiplicative inverse, as above. For
instance,

2−1 ≡ 6, 3−1 ≡ 4, 4−1 ≡ 4 mod 11.

Question 10.
(a) Justify the following congruence modulo 11:

10! ≡ 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10

≡ 1 · 2 · 2−1 · 3 · 3−1 · 5 · 5−1 · 7 · 7−1 · 10

≡ 1 · 10 ≡ −1 mod 11.

(b) Generalize the formula in (a) to prove that if p is any prime then (p− 1)! ≡ −1 mod p.
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Solution:
Let p ≥ 2 be a prime. The congruence classes in Up = {1, 2, . . . , p− 1} are all units in Z/pZ
because they are all relatively prime to p. First we prove two preliminary results:

1. Every unit in Z/pZ has a unique inverse element modulo p. Let u be a unit, thus
ux ≡ 1 mod p has a solution (because (u, p) = 1). Let us call the solution v. Thus
v is also a unit and it is an inverse for u. Suppose that v′ is also an inverse, i.e.
uv′ ≡ 1 mod p. Then:

uv′ ≡ uv mod p

and since u is a unit, we also have that v′ ≡ v mod p and therefore they are the same
unit modulo p.

2. The only units u in Z/pZ that are their own inverse (i.e. u · u ≡ 1 mod p) are
u ≡ ±1 mod p. To prove this, suppose x is such that x · x ≡ x2 ≡ 1 mod p. Then
x2 − 1 is divisible by p and hence p divides (x − 1)(x + 1). Since p is prime and p
divides a product of two factors, it must divide one of the factors, so either p divides
x− 1 or x + 1. And this is equivalent to x ≡ 1 or x ≡ −1 mod p.

Therefore, every unit has a unique inverse and only ±1 are their own inverses. This im-
plies that we can arrange the numbers 2, 3, . . . , p−2 in pairs: u1, v1, u2, v2, . . . u(p−3)/2, v(p−3)/2
such that vi is the inverse of ui. Hence:

(p− 1)! ≡ 1 · 2 · 3 · · · (p− 2) · (p− 1)

≡ 1 · u1 · v1 · u2 · v2 · · ·u(p−3)/2 · v(p−3)/2 · (p− 1)

≡ 1 · (p− 1) ≡ p− 1 ≡ −1 mod p

as claimed.


