The art of doing mathematics consists in finding that special case which contains all the germs of generality. - David Hilbert.

Question 1. Fermat's little theorem says that if p is prime and $\operatorname{gcd}(2, p)=1$, then $2^{p-1} \equiv 1 \bmod$ p. However, the converse is not true: if m is a number, $\operatorname{gcd}(2, m)=1$, and $2^{m-1} \equiv 1 \bmod m$, this does not imply that m is a prime number. A number m is called a 2 -pseudoprime if (a) m is composite, and (b) $2^{m-1} \equiv 1 \bmod m$. Show that 341 is a 2 -pseudoprime, i.e., show that $2^{340} \equiv 1 \bmod 341$, but 341 is a composite number.

Question 2.

(a) Verify that if n is composite, i.e., $n=a b$, then the polynomial $x^{n}-1$ factors as

$$
x^{n}-1=\left(x^{b}-1\right)\left(x^{b(a-1)}+x^{b(a-2)}+\cdots+x^{b}+1\right) .
$$

(b) Show that if n is composite, then $m=2^{n}-1$ is also composite.
(c) Show that if n is a 2 -pseudoprime, then $m=2^{n}-1$ is also a 2 -pseudoprime.
(d) Use part (c) to show that there are infinitely many 2 -pseudoprimes.

Question 3. A Carmichael number is a composite positive integer m such that $b^{m-1} \equiv 1 \bmod m$ for all integers b which are relatively prime to m.
(a) Show that 561 is a 2 -pseudoprime and a 5 -pseudoprime, i.e., show that

$$
2^{560} \equiv 1 \bmod 561, \quad \text { and } \quad 5^{560} \equiv 1 \bmod 561 .
$$

(b) Show that $b^{80} \equiv 1 \bmod 561$, for all b relatively prime to 561 . (Hint: Use Fermat's little theorem.)
(c) Use part (b) to conclude that 561 is a Carmichael number. (In fact, 561 is the smallest Carmichael number.)
(d) Prove that 1105 is also a Carmichael number. (1105 is the second Carmichael number.)

Question 4. Show that for any prime p the polynomial $x^{p}-x$ factors as

$$
x(x-1)(x-2) \cdots(x-(p-1))
$$

over $(\mathbb{Z} / p \mathbb{Z})[x]$. Check that this works for $p=5$.
Question 5. Prove that 74 is a primitive root modulo 89.
Question 6. Find a primitive root modulo 61.
Question 7. Find a primitive root modulo 73.
Question 8. Let p be an odd prime. Show that if b is a primitive root modulo p then

$$
b^{(p-1) / 2} \equiv-1 \quad \bmod p .
$$

Question 9. Prove Wilson's theorem using the fact that there exists a primitive root modulo p. (Hint: suppose that g is a primitive root $\bmod p$, and write every unit as a power of g.)

