Highlights of Chapters 8 and 10.

Chapter 8: Primitive Roots

1. Definition of order $\bmod m$: the multiplicative order of a unit $a \bmod m$ is the least natural number $n \geq 1$ such that $a^{n} \equiv 1 \bmod m$.
2. If $a^{t} \equiv 1 \bmod m$, then $\operatorname{ord}_{m} a$ divides t. In particular,

- The order of a unit modulo p, a prime, always divides $p-1$.
- The order of a unit modulo m always divides $\varphi(m)$.

3. The order of $a^{d} \bmod m$ is given by $\operatorname{ord}_{m}\left(a^{d}\right)=\frac{\operatorname{ord}_{m}(a)}{\left.\operatorname{gcd}^{(\operatorname{ord}}(\mathrm{a}), d\right)}$.
4. If $\operatorname{ord}_{m}(a)=h$ and $\operatorname{ord}_{m}(b)=k$, and $\operatorname{gcd}(h, k)=1$, then $\operatorname{ord}_{m}(a b)=h k$.
5. Definition of primitive root: $g \bmod m$ is a primitive root if $\operatorname{ord}_{m}(g)=\varphi(m)$.
6. Lemma: if $g \bmod m$ is a primitive root, then $\left\{g, g^{2}, \ldots, g^{\varphi(m)} \bmod m\right\}$ is are all the units $\bmod m$.
7. If $\mathbb{Z} / m \mathbb{Z}$ has at least one primitive root, then there are exactly $\varphi(\varphi(m))$ primitive roots.
8. Theorem: for every prime p there is at least one primitive root in $\mathbb{Z} / p \mathbb{Z}$.

Chapter 10: Quadratic Congruences

1. To solve $a x^{2}+b x+c \equiv 0 \bmod m$, the quadratic formula $x \equiv \frac{-b+s}{2 a} \bmod m$ works as long as $\operatorname{gcd}(2 a, m)=1$, where s is any root of $x^{2} \equiv b^{2}-4 a c \bmod m$.
2. Definition of quadratic residue and quadratic non-residue: a unit $a \bmod m$ is a QR if there is some $b \bmod m$ such that $b^{2} \equiv a \bmod m$. The class of a is a QNR if there is no b such that $b^{2} \equiv a \bmod m$.
3. Theorem: for any prime $p>2$, the class of -1 is a QR if and only if $p \equiv 1 \bmod 4$.
4. Definition of the Legendre symbol, for p a prime: $\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \mid a, \\ 1 & \text { if } a \text { is a QR, } \\ -1 & \text { if } a \text { is a QNR. }\end{cases}$
5. Properties of the Legendre symbol, for a prime p and any $a, b \in \mathbb{Z}$:

- $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$ if $a \equiv b \bmod p$,
- $\left(\frac{a}{p}\right)=\left(\frac{a b^{2}}{p}\right)$, and $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$,
- $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$, and $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}$.
- Euler's criterion: $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \bmod p$.

6. Law of Quadratic Reciprocity: if p and q are distinct odd primes, then

$$
\left(\frac{p}{q}\right)= \begin{cases}\left(\frac{q}{p}\right) & \text { if } p \text { or } q \equiv 1 \bmod 4, \\ -\left(\frac{q}{p}\right) & \text { if } p \equiv q \equiv 3 \bmod 4 .\end{cases}
$$

