Highlights of Chapters 8 and 10.

Chapter 8: Primitive Roots

- 1. Definition of order mod m: the multiplicative order of a unit $a \mod m$ is the least natural number $n \ge 1$ such that $a^n \equiv 1 \mod m$.
- 2. If $a^t \equiv 1 \mod m$, then $\operatorname{ord}_m a$ divides t. In particular,
 - The order of a unit modulo p, a prime, always divides p-1.
 - The order of a unit modulo m always divides $\varphi(m)$.
- 3. The order of $a^d \mod m$ is given by $\operatorname{ord}_m(a^d) = \frac{\operatorname{ord}_m(a)}{\operatorname{gcd}(\operatorname{ord}_m(a),d)}$.
- 4. If $\operatorname{ord}_m(a) = h$ and $\operatorname{ord}_m(b) = k$, and $\operatorname{gcd}(h, k) = 1$, then $\operatorname{ord}_m(ab) = hk$.
- 5. Definition of primitive root: $g \mod m$ is a primitive root if $\operatorname{ord}_m(g) = \varphi(m)$.
- 6. Lemma: if $g \mod m$ is a primitive root, then $\{g, g^2, \ldots, g^{\varphi(m)} \mod m\}$ is are all the units mod m.
- 7. If $\mathbb{Z}/m\mathbb{Z}$ has at least one primitive root, then there are exactly $\varphi(\varphi(m))$ primitive roots.
- 8. Theorem: for every prime p there is at least one primitive root in $\mathbb{Z}/p\mathbb{Z}$.

Chapter 10: Quadratic Congruences

- 1. To solve $ax^2 + bx + c \equiv 0 \mod m$, the quadratic formula $x \equiv \frac{-b+s}{2a} \mod m$ works as long as gcd(2a, m) = 1, where s is any root of $x^2 \equiv b^2 4ac \mod m$.
- 2. Definition of quadratic residue and quadratic non-residue: a unit $a \mod m$ is a QR if there is some $b \mod m$ such that $b^2 \equiv a \mod m$. The class of a is a QNR if there is no b such that $b^2 \equiv a \mod m$.
- 3. Theorem: for any prime p > 2, the class of -1 is a QR if and only if $p \equiv 1 \mod 4$.
- 4. Definition of the Legendre symbol, for p a prime: $\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p|a, \\ 1 & \text{if } a \text{ is a QR}, \\ -1 & \text{if } a \text{ is a QNR}. \end{cases}$
- 5. Properties of the Legendre symbol, for a prime p and any $a, b \in \mathbb{Z}$:
 - $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$ if $a \equiv b \mod p$,
 - $\left(\frac{a}{p}\right) = \left(\frac{ab^2}{p}\right)$, and $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$,
 - $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$, and $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.
 - Euler's criterion: $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \mod p.$
- 6. Law of Quadratic Reciprocity: if p and q are distinct odd primes, then

$$\left(\frac{p}{q}\right) = \begin{cases} \left(\frac{q}{p}\right) & \text{if } p \text{ or } q \equiv 1 \mod 4, \\ -\left(\frac{q}{p}\right) & \text{if } p \equiv q \equiv 3 \mod 4. \end{cases}$$