The art of doing mathematics consists in finding that special case which contains all the germs of generality. - David Hilbert.

Question 1. Fermat's little theorem says that if p is prime and $\operatorname{gcd}(2, p)=1$, then $2^{p-1} \equiv 1 \bmod$ p. However, the converse is not true: if m is a number, $\operatorname{gcd}(2, m)=1$, and $2^{m-1} \equiv 1 \bmod m$, this does not imply that m is a prime number. A number m is called a 2-pseudoprime if (a) m is composite, and (b) $2^{m-1} \equiv 1 \bmod m$. Show that 341 is a 2 -pseudoprime, i.e., show that $2^{340} \equiv 1 \bmod 341$, but 341 is a composite number.

Solution:

The number 341 is a 2 -pseudoprime is 341 is composite and $2^{340} \equiv 1 \bmod 341$. First, let us factor 341. Clearly, $341<19^{2}$ therefore $\sqrt{341}<19$. Thus, 341 must have a prime divisor less than 19. The divisibility test for 11 shows that $341 \equiv 3+4-1 \equiv 0 \bmod 11$, so it is divisible by 11 . Thus $341=11 \cdot 31$.

Now we calculate $2^{3} 40 \bmod 341$. We can calculate:

$$
\phi(341)=\phi(11) \phi(31)=300
$$

thus, by Euler's theorem $2^{300} \equiv 1 \bmod 341$ and

$$
2^{340} \equiv 2^{300} \cdot 2^{40} \equiv 2^{40} \quad \bmod 341 .
$$

Finally, since $40=32+8$, we calculate some powers of 2 :

$$
2,2^{2} \equiv 4,2^{4} \equiv 16,2^{8} \equiv 256,2^{16} \equiv 64,2^{32} \equiv 4 \quad \bmod 341
$$

Hence:

$$
2^{340} \equiv 2^{40} \equiv 2^{32} \cdot 2^{8} \equiv 4 \cdot 256 \equiv 1 \quad \bmod 341 .
$$

Question 2.

(a) Verify that if n is composite, i.e., $n=a b$, then the polynomial $x^{n}-1$ factors as

$$
x^{n}-1=\left(x^{b}-1\right)\left(x^{b(a-1)}+x^{b(a-2)}+\cdots+x^{b}+1\right) .
$$

(b) Show that if n is composite, then $m=2^{n}-1$ is also composite.
(c) Show that if n is a 2 -pseudoprime, then $m=2^{n}-1$ is also a 2 -pseudoprime.
(d) Use part (c) to show that there are infinitely many 2 -pseudoprimes.

Solution:

1. Simply multiplying the polynomials proves the identity. Otherwise, note that $x^{a}-1=$ $(x-1)\left(x^{a-1}+\cdots+x+1\right)$ and substitute x by x^{b}.
2. By the previous identity, if $n=a b$, with $1<a, b<n$, then

$$
m=2^{n}-1=2^{a b}-1=\left(2^{b}-1\right)\left(2^{b(a-1)}+2^{b(a-2)}+\cdots+2^{b}+1\right) .
$$

Since $a, b>1$, both factors are >1, and therefore $m=2^{n}-1$ is composite.
3. Suppose n is a 2 -pseudoprime. Then, n is composite and $2^{n-1} \equiv 1 \bmod n$. By the previous part, $m=2^{n}-1$ is composite as well, so we only need to show that $2^{m-1} \equiv 1 \bmod m$. Since $2^{n-1} \equiv 1 \bmod n$, this implies that there is some $k \geq 1$ such that $2^{n-1}-1=n k$. Now,

$$
2^{m-1} \equiv 2^{\left(2^{n}-1\right)-1} \equiv 2^{2^{n}-2} \equiv 2^{2\left(2^{n-1}-1\right)} \equiv 2^{2 n k} \equiv\left(2^{n}\right)^{2 k} \equiv 1^{2 k} \equiv 1 \bmod \left(2^{n}-1\right)
$$

where we have used the fact that $2^{n} \equiv 1 \bmod \left(2^{n}-1\right)$. Thus, $2^{m-1} \equiv 1 \bmod m$, and m is composite, and this shows that m is a 2 -pseudoprime.
4. We just showed that if n passes the 2 -pseudoprime test then $2^{n}-1$ does also. Moreover, if n is composite then $2^{n}-1$ is composite. Thus, let n be a 2 -pseudoprime (such as 341), so that n is composite and it passes the 2 -pseudoprime test. Then $2^{n}-1$ is composite and it passes the 2-pseudoprime test, and therefore it is a 2 -pseudoprime. Hence, the numbers in the sequence:

$$
A_{0}=341, \quad A_{n+1}=2^{A_{n}}-1
$$

are infinitely many 2 -pseudoprimes.

Question 3. A Carmichael number is a composite positive integer m such that $b^{m-1} \equiv 1 \bmod m$ for all integers b which are relatively prime to m.
(a) Show that 561 is a 2 -pseudoprime and a 5 -pseudoprime, i.e., show that

$$
2^{560} \equiv 1 \bmod 561, \quad \text { and } \quad 5^{560} \equiv 1 \bmod 561
$$

(b) Show that $b^{80} \equiv 1 \bmod 561$, for all b relatively prime to 561 . (Hint: Use Fermat's little theorem.)
(c) Use part (b) to conclude that 561 is a Carmichael number. (In fact, 561 is the smallest Carmichael number.)
(d) Prove that 1105 is also a Carmichael number. (1105 is the second Carmichael number.)

Solution:

1. The number $561=3 \cdot 11 \cdot 17$ is composite. Moreover, $2^{2} \equiv 5^{2} \equiv 1 \bmod 3,2^{10} \equiv$ $5^{10} \equiv 1 \bmod 11$, and $2^{16} \equiv 5^{16} \equiv 1 \bmod 17$, by Fermat's little theorem. In particular, $2^{80} \equiv 5^{80} \equiv 1 \bmod 3,11$ and 17 , because 2,10 and 16 are divisors of 80 . Thus, by the Chinese remainder theorem, $2^{80} \equiv 1 \bmod 561$. Since $560=80 \cdot 7$ it follows that

$$
2^{560} \equiv\left(2^{80}\right)^{7} \equiv 1^{7} \equiv 1 \bmod 561
$$

and similarly $5^{560} \equiv 1 \bmod 561$. Hence, the number 561 is a 2 -pseudoprime and also a 5 -pseudoprime.
2. If b is relatively prime to $561=3 \cdot 11 \cdot 17$, it follows from Fermat's little theorem that $b^{2} \equiv 1 \bmod 3, b^{10} \equiv 1 \bmod 11$, and $b^{16} \equiv 1 \bmod 17 . \quad$ In particular, $b^{80} \equiv 1 \bmod 3$, 11 and 17 , because 2,10 and 16 are divisors of 80 . Thus, by the Chinese remainder theorem, $b^{80} \equiv 1 \bmod 561$.
3. Hence, 561 is a Carmichael number, because it is composite and $b^{560} \equiv\left(b^{80}\right)^{7} \equiv$ $1 \bmod 561$ for all b relatively prime to 561 .
4. Similarly, $1105=5 \cdot 13 \cdot 17$ is composite. If b is relatively prime to 1105 , then it follows from Fermat's little theorem that $b^{4} \equiv 1 \bmod 5, b^{12} \equiv 1 \bmod 13$, and $b^{16} \equiv 1 \bmod 17$. In particular, $b^{48} \equiv 1 \bmod 5,13$ and 17 , because 4,12 and 16 are divisors of 48 . Thus, by the Chinese remainder theorem, $b^{48} \equiv 1 \bmod 1105$. Finally, since $1104=48 \cdot 23$, it follows that

$$
b^{1104} \equiv\left(b^{48}\right)^{23} \equiv 1 \bmod 1105
$$

for all b relatively prime to 1105 . Hence, 1105 is also a Carmichael number.

Question 4. Show that for any prime p the polynomial $x^{p}-x$ factors as

$$
x(x-1)(x-2) \cdots(x-(p-1))
$$

over $(\mathbb{Z} / p \mathbb{Z})[x]$. Check that this works for $p=5$.

Solution:

Let $f(x)=x^{5}-x$. Recall that by the root theorem, if $f(a \bmod 5) \equiv 0 \bmod 5$ then $(x-a)$ divides $f(x)$ in $\mathbb{Z} / 5 \mathbb{Z}[x]$. Moreover, by Fermat's little theorem, we know that $a^{5} \equiv a \bmod 5$, for all $a \equiv 0,1,2,3,4 \bmod 5$. Therefore, $a \equiv 0,1,2,3,4 \bmod 5$ are all roots of $x^{5}-x$ and, hence, $(x-a)$ divides $x^{5}-x$ for $a=0,1,2,3,4$, in $\mathbb{Z} / 5 \mathbb{Z}[x]$. Since $(x-0)(x-1)(x-2)(x-$ $3)(x-4)$ is a monic polynomial of degree 5 that divides $x^{5}-x$, they must be equal. Hence:

$$
x^{5}-x \equiv x(x-1)(x-2)(x-3)(x-4) \bmod 5 .
$$

Let now $f(x)=x^{p}-x$. Recall that by the root theorem, if $f(a \bmod p) \equiv 0 \bmod p$ then $(x-a)$ divides $f(x)$ in $\mathbb{Z} / p \mathbb{Z}[x]$. Moreover, by Fermat's little theorem, we know that $a^{5} \equiv a \bmod p$, for all $a \equiv 0,1,2, \ldots, p-1 \bmod p$. Therefore, $a \equiv 0,1,2, \ldots, p-1 \bmod p$ are all roots of $x^{p}-x$ and, hence, $(x-a)$ divides $x^{p}-x$ for $a=0,1,2, \ldots, p-1$, in $\mathbb{Z} / p \mathbb{Z}[x]$. Since $(x-0)(x-1)(x-2) \cdots(x-(p-1))$ is a monic polynomial of degree p that divides $x^{p}-x$, they must be equal. Hence:

$$
x^{p}-x \equiv x(x-1)(x-2) \cdots(x-(p-1)) \bmod p
$$

Question 5. Prove that 74 is a primitive root modulo 89 .

Solution:

First we show that 2 has order 11 modulo 89 . Notice that if we show that $2^{11} \equiv 1 \bmod 89$, then the order must be 11 because the order would divide 11 and it is clearly not just 1 , so it must be 11 . In order to show that $2^{11} \equiv 1 \bmod 89$, notice that

$$
2^{6} \equiv 64 \equiv-25 \equiv-\left(5^{2}\right) \bmod 89
$$

Moreover $5^{4} \equiv\left(25^{2}\right) \equiv 625 \equiv 2 \bmod 89$. Therefore:

$$
2^{12} \equiv\left(2^{6}\right)^{2} \equiv\left(-5^{2}\right)^{2} \equiv 5^{4} \equiv 2 \bmod 89
$$

and so, $2^{11} \equiv 1 \bmod 89$.
Next we show that 37 has order 8 modulo 89 . Calculate $37^{2} \equiv 34 \bmod 89$ and $34^{2} \equiv$ $88 \equiv-1 \bmod 89$. Therefore $37^{8} \equiv\left(37^{4}\right)^{2} \equiv(-1)^{2} \equiv 1 \bmod 89$.

Finally, since $\operatorname{ord}(2)=11$, $\operatorname{ord}(37)=8$ and $(11,8)=1$, it follows that $\operatorname{ord}(74)=$ $\operatorname{ord}(2 \cdot 37)=11 \cdot 8=88=89-1$. Hence, 74 is a primitive root modulo 89 .

Question 6. Find a primitive root modulo 61.

Solution:

Let us check that 2 is a primitive root modulo 61 . Thus, we need to check that the order of 2 is exactly 60 . Notice that the order of 2 must be a divisor of $60=4 \cdot 3 \cdot 5$, so the possible orders are: $1,2,3,4,5,6,10,12,15,20,30,60$. We need to check that $2^{d} \neq 1 \bmod 61$ for all $d=1,2,3,4,5,6,10,12,15,20,30$ but $2^{60} \equiv 1 \bmod 61$ (the last congruence is, of course, a result of Fermat's little theorem and it doesn't need to be checked).

$$
\begin{aligned}
2 & \neq 1 \bmod 61 \\
2^{2} & \equiv 4 \neq 1 \bmod 61 \\
2^{3} & \equiv 8 \neq 1 \bmod 61 \\
2^{4} & \equiv 16 \neq 1 \bmod 61 \\
2^{5} & \equiv 32 \neq 1 \bmod 61 \\
2^{6} & \equiv 64 \equiv 3 \neq 1 \bmod 61 \\
2^{10} & \equiv 2^{6} \cdot 2^{4} \equiv 3 \cdot 16 \equiv 48 \neq 1 \bmod 61 \\
2^{12} & \equiv 2^{10} \cdot 2^{2} \equiv 48 \cdot 4 \equiv 192 \equiv 9 \neq 1 \bmod 61 \\
2^{15} & \equiv 2^{12} \cdot 2^{3} \equiv 9 \cdot 8 \equiv 11 \neq 1 \bmod 61 \\
2^{20} & \equiv 2^{15} \cdot 2^{5} \equiv 11 \cdot 32 \equiv 352 \equiv 47 \neq 1 \bmod 61 \\
2^{30} & \equiv\left(2^{15}\right)^{2} \equiv 11^{2} \equiv 121 \equiv-1 \neq 1 \bmod 61 \\
2^{60} & \equiv\left(2^{30}\right)^{2} \equiv(-1)^{2} \equiv 1 \bmod 61
\end{aligned}
$$

Question 7. Find a primitive root modulo 73.

Solution:

We begin by calculating the order of 2 modulo 73 . Notice that the possible orders are the divisors of $72=2^{3} \cdot 3^{2}$, which are: $1,2,3,4,6,8,9,12,18,24,36,72$. After some calculations, we find that $2^{9} \equiv 1 \bmod 73$ and not before. Thus, the order of 2 is 9 , not a primitive root.

Let us try 3 next. After the appropriate calculations, we find that $3^{12} \equiv 1 \bmod 73$ and not before. Therefore the order is 12 . Since $(12,9)=3$, we use 3 to find another congruence of order 4 . Since 3 has order 12 then $3^{3}=27$ must have order 4 . Now, if we had instead an element a of order 8 , then we would be almost done because $2 a$ would have order $8 \cdot 9=72$. Since 27 has order 4 , if we have a such that $a^{2} \equiv 27$ then a would have order 8 . So we try to find a root of $x^{2} \equiv 27 \bmod 73$. It turns out that $10^{2} \equiv 27 \bmod 73$. And we can check that the order of 10 is precisely 8 modulo 73 .

Since 8 and 9 are relatively prime, and $\operatorname{ord}(2)=9$, ord $(10)=8$, it turns out that $\operatorname{ord}(20)=\operatorname{ord}(2 \cdot 10)=8 \cdot 9=72$, by a result in class. Therefore, 20 is a primitive root modulo 73.

Question 8. Let p be an odd prime. Show that if b is a primitive root modulo p then

$$
b^{(p-1) / 2} \equiv-1 \quad \bmod p
$$

Solution:

Let p be an odd prime, let b be a primitive root modulo p, notice that $(p-1) / 2$ is an integer (because p is odd) and put

$$
a \equiv b^{(p-1) / 2} \bmod p
$$

First, we claim that $a^{2} \equiv 1 \bmod p$. Indeed:

$$
a^{2} \equiv\left(b^{(p-1) / 2}\right)^{2} \equiv b^{p-1} \equiv 1 \bmod p
$$

by Fermat's little theorem. However, we know that $x^{2} \equiv 1 \bmod p$ has only two solutions, namely ± 1. But since b is a primitive root, we cannot have $b^{(p-1) / 2} \equiv 1 \bmod p$ because this would contradict the fact that the order of b is precisely $p-1$. Therefore, $a \equiv b^{(p-1) / 2} \equiv$ $-1 \bmod p$ as claimed.

Question 9. Prove Wilson's theorem using the fact that there exists a primitive root modulo p. (Hint: suppose that g is a primitive root $\bmod p$, and write every unit as a power of g.)

Solution:

Let p be an odd prime and let be a primitive root modulo p. Then the order of b is precisely $p-1$ and, therefore, every unit $1,2, \ldots, p-1$ modulo p can be expressed as one of the powers:

$$
b, b^{2}, b^{3}, \ldots, b^{p-1} \bmod p
$$

Therefore, $\{1,2, \ldots, p-1\}$ and $\left\{b, b^{2}, \ldots, b^{p-1}\right\}$ are both complete systems of representatives of the units modulo p and so:
$(p-1)!\equiv 1 \cdot 2 \cdots(p-1) \equiv b \cdot b^{2} \cdots b^{p-1} \equiv b^{1+2+\cdots+(p-1)} \equiv b^{p(p-1) / 2} \equiv\left(b^{(p-1) / 2}\right)^{p} \equiv(-1)^{p} \equiv-1$ modulo p, where we have used the previous problem (i.e., $b^{(p-1) / 2} \equiv-1 \bmod p$ when b is a primitive root modulo p) and the equality $1+2+3+\ldots+n=\frac{n(n+1)}{2}$.

Alternatively, let p be an odd prime, and let b be a primitive root modulo p. Then:

$$
\begin{aligned}
(p-1)! & \equiv b \cdot b^{2} \cdots b^{p-1} \\
& \equiv\left(b \cdot b^{p-1}\right)\left(b^{2} \cdot b^{p-2}\right) \cdots\left(b^{(p-1) / 2} \cdot b^{(p+1) / 2}\right) \\
& \equiv b^{p} \cdot b^{p} \cdots b^{p} \\
& \equiv b \cdot b \cdots b \\
& \equiv b^{(p-1) / 2} \equiv-1 \bmod p
\end{aligned}
$$

where we have used Fermat's little theorem to show that $b^{p} \equiv b \bmod p$ (or the fact that the order of b is $p-1$), and the solution of the previous problem (i.e., $b^{(p-1) / 2} \equiv-1 \bmod p$ when b is a primitive root modulo p).

