
MATH 3240 Introduction to Number Theory Homework 6

The art of doing mathematics consists in finding that special case which contains all
the germs of generality. - David Hilbert.

Question 1. Fermat’s little theorem says that if p is prime and gcd(2, p) = 1, then 2p−1 ≡ 1 mod
p. However, the converse is not true: if m is a number, gcd(2,m) = 1, and 2m−1 ≡ 1 mod m,
this does not imply that m is a prime number. A number m is called a 2-pseudoprime if (a)
m is composite, and (b) 2m−1 ≡ 1 mod m. Show that 341 is a 2-pseudoprime, i.e., show that
2340 ≡ 1 mod 341, but 341 is a composite number.

Solution:
The number 341 is a 2-pseudoprime is 341 is composite and 2340 ≡ 1 mod 341. First, let us
factor 341. Clearly, 341 < 192 therefore

√
341 < 19. Thus, 341 must have a prime divisor

less than 19. The divisibility test for 11 shows that 341 ≡ 3 + 4 − 1 ≡ 0 mod 11, so it is
divisible by 11. Thus 341 = 11 · 31.

Now we calculate 2340 mod 341. We can calculate:

φ(341) = φ(11)φ(31) = 300

thus, by Euler’s theorem 2300 ≡ 1 mod 341 and

2340 ≡ 2300 · 240 ≡ 240 mod 341.

Finally, since 40 = 32 + 8, we calculate some powers of 2:

2, 22 ≡ 4, 24 ≡ 16, 28 ≡ 256, 216 ≡ 64, 232 ≡ 4 mod 341

Hence:
2340 ≡ 240 ≡ 232 · 28 ≡ 4 · 256 ≡ 1 mod 341.

Question 2.
(a) Verify that if n is composite, i.e., n = ab, then the polynomial xn − 1 factors as

xn − 1 = (xb − 1)(xb(a−1) + xb(a−2) + · · ·+ xb + 1).

(b) Show that if n is composite, then m = 2n − 1 is also composite.

(c) Show that if n is a 2-pseudoprime, then m = 2n − 1 is also a 2-pseudoprime.

(d) Use part (c) to show that there are infinitely many 2-pseudoprimes.

Solution:

1. Simply multiplying the polynomials proves the identity. Otherwise, note that xa−1 =
(x− 1)(xa−1 + · · ·+ x+ 1) and substitute x by xb.

2. By the previous identity, if n = ab, with 1 < a, b < n, then

m = 2n − 1 = 2ab − 1 = (2b − 1)(2b(a−1) + 2b(a−2) + · · ·+ 2b + 1).

Since a, b > 1, both factors are > 1, and therefore m = 2n − 1 is composite.
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3. Suppose n is a 2-pseudoprime. Then, n is composite and 2n−1 ≡ 1 mod n. By
the previous part, m = 2n − 1 is composite as well, so we only need to show that
2m−1 ≡ 1 mod m. Since 2n−1 ≡ 1 mod n, this implies that there is some k ≥ 1 such
that 2n−1 − 1 = nk. Now,

2m−1 ≡ 2(2
n−1)−1 ≡ 22

n−2 ≡ 22(2
n−1−1) ≡ 22nk ≡ (2n)2k ≡ 12k ≡ 1 mod (2n − 1),

where we have used the fact that 2n ≡ 1 mod (2n − 1). Thus, 2m−1 ≡ 1 mod m, and
m is composite, and this shows that m is a 2-pseudoprime.

4. We just showed that if n passes the 2-pseudoprime test then 2n−1 does also. Moreover,
if n is composite then 2n − 1 is composite. Thus, let n be a 2-pseudoprime (such as
341), so that n is composite and it passes the 2-pseudoprime test. Then 2n − 1 is
composite and it passes the 2-pseudoprime test, and therefore it is a 2-pseudoprime.
Hence, the numbers in the sequence:

A0 = 341, An+1 = 2An − 1

are infinitely many 2-pseudoprimes.

Question 3. A Carmichael number is a composite positive integerm such that bm−1 ≡ 1 mod m
for all integers b which are relatively prime to m.
(a) Show that 561 is a 2-pseudoprime and a 5-pseudoprime, i.e., show that

2560 ≡ 1 mod 561, and 5560 ≡ 1 mod 561.

(b) Show that b80 ≡ 1 mod 561, for all b relatively prime to 561. (Hint: Use Fermat’s little
theorem.)

(c) Use part (b) to conclude that 561 is a Carmichael number. (In fact, 561 is the smallest
Carmichael number.)

(d) Prove that 1105 is also a Carmichael number. (1105 is the second Carmichael number.)

Solution:

1. The number 561 = 3 · 11 · 17 is composite. Moreover, 22 ≡ 52 ≡ 1 mod 3, 210 ≡
510 ≡ 1 mod 11, and 216 ≡ 516 ≡ 1 mod 17, by Fermat’s little theorem. In particular,
280 ≡ 580 ≡ 1 mod 3, 11 and 17, because 2, 10 and 16 are divisors of 80. Thus, by the
Chinese remainder theorem, 280 ≡ 1 mod 561. Since 560 = 80 · 7 it follows that

2560 ≡ (280)7 ≡ 17 ≡ 1 mod 561,

and similarly 5560 ≡ 1 mod 561. Hence, the number 561 is a 2-pseudoprime and also
a 5-pseudoprime.

2. If b is relatively prime to 561 = 3 · 11 · 17, it follows from Fermat’s little theorem that
b2 ≡ 1 mod 3, b10 ≡ 1 mod 11, and b16 ≡ 1 mod 17. In particular, b80 ≡ 1 mod 3,
11 and 17, because 2, 10 and 16 are divisors of 80. Thus, by the Chinese remainder
theorem, b80 ≡ 1 mod 561.
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3. Hence, 561 is a Carmichael number, because it is composite and b560 ≡ (b80)7 ≡
1 mod 561 for all b relatively prime to 561.

4. Similarly, 1105 = 5 ·13 ·17 is composite. If b is relatively prime to 1105, then it follows
from Fermat’s little theorem that b4 ≡ 1 mod 5, b12 ≡ 1 mod 13, and b16 ≡ 1 mod 17.
In particular, b48 ≡ 1 mod 5, 13 and 17, because 4, 12 and 16 are divisors of 48. Thus,
by the Chinese remainder theorem, b48 ≡ 1 mod 1105. Finally, since 1104 = 48 · 23, it
follows that

b1104 ≡ (b48)23 ≡ 1 mod 1105

for all b relatively prime to 1105. Hence, 1105 is also a Carmichael number.

Question 4. Show that for any prime p the polynomial xp − x factors as

x(x− 1)(x− 2) · · · (x− (p− 1))

over (Z/pZ)[x]. Check that this works for p = 5.

Solution:
Let f(x) = x5 − x. Recall that by the root theorem, if f(a mod 5) ≡ 0 mod 5 then (x− a)
divides f(x) in Z/5Z[x]. Moreover, by Fermat’s little theorem, we know that a5 ≡ a mod 5,
for all a ≡ 0, 1, 2, 3, 4 mod 5. Therefore, a ≡ 0, 1, 2, 3, 4 mod 5 are all roots of x5 − x and,
hence, (x− a) divides x5− x for a = 0, 1, 2, 3, 4, in Z/5Z[x]. Since (x− 0)(x− 1)(x− 2)(x−
3)(x− 4) is a monic polynomial of degree 5 that divides x5−x, they must be equal. Hence:

x5 − x ≡ x(x− 1)(x− 2)(x− 3)(x− 4) mod 5.

Let now f(x) = xp − x. Recall that by the root theorem, if f(a mod p) ≡ 0 mod p then
(x − a) divides f(x) in Z/pZ[x]. Moreover, by Fermat’s little theorem, we know that
a5 ≡ a mod p, for all a ≡ 0, 1, 2, . . . , p− 1 mod p. Therefore, a ≡ 0, 1, 2, . . . , p− 1 mod p are
all roots of xp − x and, hence, (x − a) divides xp − x for a = 0, 1, 2, . . . , p − 1, in Z/pZ[x].
Since (x− 0)(x− 1)(x− 2) · · · (x− (p− 1)) is a monic polynomial of degree p that divides
xp − x, they must be equal. Hence:

xp − x ≡ x(x− 1)(x− 2) · · · (x− (p− 1)) mod p.

Question 5. Prove that 74 is a primitive root modulo 89.

Solution:
First we show that 2 has order 11 modulo 89. Notice that if we show that 211 ≡ 1 mod 89,
then the order must be 11 because the order would divide 11 and it is clearly not just 1, so
it must be 11. In order to show that 211 ≡ 1 mod 89, notice that

26 ≡ 64 ≡ −25 ≡ −(52) mod 89.

Moreover 54 ≡ (252) ≡ 625 ≡ 2 mod 89. Therefore:

212 ≡ (26)2 ≡ (−52)2 ≡ 54 ≡ 2 mod 89
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and so, 211 ≡ 1 mod 89.
Next we show that 37 has order 8 modulo 89. Calculate 372 ≡ 34 mod 89 and 342 ≡

88 ≡ −1 mod 89. Therefore 378 ≡ (374)2 ≡ (−1)2 ≡ 1 mod 89.
Finally, since ord(2) = 11, ord(37) = 8 and (11, 8) = 1, it follows that ord(74) =

ord(2 · 37) = 11 · 8 = 88 = 89− 1. Hence, 74 is a primitive root modulo 89.

Question 6. Find a primitive root modulo 61.

Solution:
Let us check that 2 is a primitive root modulo 61. Thus, we need to check that the order of
2 is exactly 60. Notice that the order of 2 must be a divisor of 60 = 4 · 3 · 5, so the possible
orders are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60. We need to check that 2d 6= 1 mod 61 for all
d = 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 but 260 ≡ 1 mod 61 (the last congruence is, of course, a
result of Fermat’s little theorem and it doesn’t need to be checked).

2 6= 1 mod 61,

22 ≡ 4 6= 1 mod 61,

23 ≡ 8 6= 1 mod 61,

24 ≡ 16 6= 1 mod 61,

25 ≡ 32 6= 1 mod 61,

26 ≡ 64 ≡ 3 6= 1 mod 61,

210 ≡ 26 · 24 ≡ 3 · 16 ≡ 48 6= 1 mod 61,

212 ≡ 210 · 22 ≡ 48 · 4 ≡ 192 ≡ 9 6= 1 mod 61,

215 ≡ 212 · 23 ≡ 9 · 8 ≡ 11 6= 1 mod 61,

220 ≡ 215 · 25 ≡ 11 · 32 ≡ 352 ≡ 47 6= 1 mod 61,

230 ≡ (215)2 ≡ 112 ≡ 121 ≡ −1 6= 1 mod 61,

260 ≡ (230)2 ≡ (−1)2 ≡ 1 mod 61.

Question 7. Find a primitive root modulo 73.

Solution:
We begin by calculating the order of 2 modulo 73. Notice that the possible orders are the
divisors of 72 = 23 · 32, which are: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. After some calculations,
we find that 29 ≡ 1 mod 73 and not before. Thus, the order of 2 is 9, not a primitive root.

Let us try 3 next. After the appropriate calculations, we find that 312 ≡ 1 mod 73 and
not before. Therefore the order is 12. Since (12, 9) = 3, we use 3 to find another congruence
of order 4. Since 3 has order 12 then 33 = 27 must have order 4. Now, if we had instead an
element a of order 8, then we would be almost done because 2a would have order 8 · 9 = 72.
Since 27 has order 4, if we have a such that a2 ≡ 27 then a would have order 8. So we try
to find a root of x2 ≡ 27 mod 73. It turns out that 102 ≡ 27 mod 73. And we can check
that the order of 10 is precisely 8 modulo 73.



MATH 3240 Introduction to Number Theory Homework 6

Since 8 and 9 are relatively prime, and ord(2) = 9, ord(10) = 8, it turns out that
ord(20) = ord(2 · 10) = 8 · 9 = 72, by a result in class. Therefore, 20 is a primitive root
modulo 73.

Question 8. Let p be an odd prime. Show that if b is a primitive root modulo p then

b(p−1)/2 ≡ −1 mod p.

Solution:
Let p be an odd prime, let b be a primitive root modulo p, notice that (p−1)/2 is an integer
(because p is odd) and put

a ≡ b(p−1)/2 mod p.

First, we claim that a2 ≡ 1 mod p. Indeed:

a2 ≡ (b(p−1)/2)2 ≡ bp−1 ≡ 1 mod p

by Fermat’s little theorem. However, we know that x2 ≡ 1 mod p has only two solutions,
namely ±1. But since b is a primitive root, we cannot have b(p−1)/2 ≡ 1 mod p because this
would contradict the fact that the order of b is precisely p − 1. Therefore, a ≡ b(p−1)/2 ≡
−1 mod p as claimed.

Question 9. Prove Wilson’s theorem using the fact that there exists a primitive root modulo
p. (Hint: suppose that g is a primitive root mod p, and write every unit as a power of g.)

Solution:
Let p be an odd prime and let b be a primitive root modulo p. Then the order of b is
precisely p − 1 and, therefore, every unit 1, 2, . . . , p − 1 modulo p can be expressed as one
of the powers:

b, b2, b3, . . . , bp−1 mod p.

Therefore, {1, 2, . . . , p−1} and {b, b2, . . . , bp−1} are both complete systems of representatives
of the units modulo p and so:

(p−1)! ≡ 1·2 · · · (p−1) ≡ b·b2 · · · bp−1 ≡ b1+2+···+(p−1) ≡ bp(p−1)/2 ≡ (b(p−1)/2)p ≡ (−1)p ≡ −1

modulo p, where we have used the previous problem (i.e., b(p−1)/2 ≡ −1 mod p when b is a

primitive root modulo p) and the equality 1 + 2 + 3 + . . .+ n = n(n+1)
2 .

Alternatively, let p be an odd prime, and let b be a primitive root modulo p. Then:

(p− 1)! ≡ b · b2 · · · bp−1

≡ (b · bp−1)(b2 · bp−2) · · · (b(p−1)/2 · b(p+1)/2)

≡ bp · bp · · · bp

≡ b · b · · · b
≡ b(p−1)/2 ≡ −1 mod p,

where we have used Fermat’s little theorem to show that bp ≡ b mod p (or the fact that
the order of b is p− 1), and the solution of the previous problem (i.e., b(p−1)/2 ≡ −1 mod p
when b is a primitive root modulo p).


