Math 3230 - Abstract Algebra I
Summary of terms and theorems

1 Binary operations

Definitions and Theorems

1.

2.

Associativity of a binary operation o on a set A means (aob)oc=ao (boc) for all a,b,c € A.
Commutativity of a binary operation o on a set A means aob=boa for all a,b € A.

An identity element for a binary operation o on a set A is an e € A such that eoa = a and

aoe=aq for all a € A.

If the binary operation o on A has identity e, an inverse of a € A is a’ € A such that aoa’ =€
and a’ oa = e. Note: the inverse is in A and depends on the particular element. If there is

no identity element, inverses make no sense.

Examples

1.

In R, addition and multiplication are both associative and commutative, with respective iden-
tities 0 and 1: for all a, b, and ¢ in R,

(a+b)+c=a+(b+c) (ab)e = a(be)
a+b=b+a ab = ba
a+0=0+a=a a-1=1-a=a.

In R the additive inverse of a is —a, and for non-zero a in R its multiplicative inverse is 1/a

(0 has no multiplicative inverse).

In C addition and multiplication are both associative and commutative, with respective iden-
tities 0 and 1 (formulas in the previous example remain valid with real numbers replaced by
complex numbers). In C the additive inverse of z = z+yi is —x —yi, and for non-zero z = x+yi

in C its multiplicative inverse is (z — yi)/(z? + 32).

Matrix multiplication on M, (R) is associative with identity I,,. It is not commutative when
n > 2. A matrix in M, (R) has an inverse for multiplication precisely when its determinant is

not 0. In the 2 x 2 case, the inverse of (¢4)is —2— (%4 ") when ad — be # 0.

For any set X, composition of functions X — X is associative: if f: X — X, g: X — X, and
h: X — X are all functions then (fog)oh = fo(goh) as functions X — X. Composition
is usually not commutative: for most pairs of functions X — X the order of composition
matters. The identity function i: X — X for composition is i(z) = = for all z € X. A
function f: X — X has an inverse for composition precisely when it is a bijection (injective

and surjective).



5.

For any set X, the functions X — R (not to be confused with the functions X — X in the
previous example) can be added or multiplied pointwise: if f: X — R and g: X — R then we
define f+g: X R and fg: X — R by (f +9)(z) = f(z) + g(x) and (fg)(x) = f(2)g(z) for
x € X. Both addition and multiplication of functions X — R are commutative and associative.
For functions X — R the identity for addition is the constant function 0 and the identity for
multiplication is the constant function 1. Every function f: X — R has additive inverse —f,
where (—f)(z) = —(f(x)) for all z € X, and f has a multiplicative inverse precisely when it
never takes the value 0, in which case its multiplicative inverse is the function g(z) = 1/f(z)
for all z € X.

Non-examples

Because associativity and commutativity are properties on all pairs in a set, to prove a binary

operation is not associative or not commutative it suffices to find a single counterexample: the

property might hold some of the time but it has to fail at least once.

1.

Subtraction on Z is not associative or commutative: 1 — (2 — 3) = 2 while (1-2) -3 = —4
and 1 —2 = —1 while 2—1 = 1. There is no identity element for subtraction: if e € Z satisfies
e—a=aforall ain Z then at a =0 we see e — 0 =0, so e = 0 and then 0 — a = a for all

a € Z, which is false nearly all the time (indeed for every non-zero a).

Division on R — {0} is not associative or commutative: 1/(2/3) = 3/2 while (1/2)/3 = 1/6
and 1/2 # 2/1. There is no identity element either (why?).

On R+, exponentiation (aob = a®) is not associative or commutative. For example, (2!)? = 4
and 2(0°) = 2, while 2! = 2 and 12 = 1.

Addition on R+ is associative and commutative, but there is no identity.

Addition on R>q is associative and commutative with identity 0, but there are no inverses for

non-zero elements: if a € R>o and a # 0, there is no a’ € R>( such that a +a’ = 0.



2 Groups
Definitions and Theorems

1. A group is a set G with a binary operation o on it that is associative, has an identity (in G!),
and each element of G has an inverse (in G!). For a general group G its operation is usually
written multiplicatively: g o h is written as gh, gogo--- o g is written as g", and the inverse

e ——

n times

of ¢ is written as g~ 1.

2. When the operation on a group G is commutative, the group is called commutative or abelian.
In an abstract abelian group additive notation is often used: the identity is 0, the operation is
g+h,gogo---ogiswritten as ng, and the inverse of g is written as —g. (Do not use additive

n times
notation if a group is not abelian.)
3. Groups that are not commutative are called non-commutative or non-abelian. Non-commutativity

means gh # hg at least once, not always (e.g., ge = eg for all ¢ in a group).

4. A group G is called cyclic if there is some element g € G such that (using multiplica-
tive notation) every element of G has the form ¢” for n € Z. We then write G = (g) =
{...,97%,97 % e,9,9% ...} and say g is a generator of G. Cyclic groups must be abelian, but
the converse is false (see Non-examples below).

Note. For groups where the operation is written additively, we write ng for n copies of g
added together instead of g" (n copies of g multiplied together), so (¢g) = {ng : n € Z} =
{..,—29,—-9,0,9,2¢,...}.

Examples

1. The sets Z, Q, R, and C with the operation of addition are abelian groups. Other abelian
groups are the set of n-tuples Z™, Q™, R", and C™ using componentwise addition and the set
of n x n matrices M,,(Z), M,,(Q), M,,(R) and M,,(C) with matrix addition.

2. Three groups under multiplication are Q*, R*, and C*, which are the non-zero rational

numbers, non-zero real numbers, and non-zero complex numbers.
3. The set Z,, with the operation of addition modulo m is a finite abelian group.

4. The set p.,, of mth roots of unity in C with the operation of multiplication is a finite abelian

group.

5. The set U(m) of integers modulo m that are relatively prime to m, with the operation of

multiplication modulo m, is a finite abelian group.

6. The set of n x n real matrices with non-zero determinant is a non-abelian group under multi-

plication. This group is denoted GL, (R).



7. Some finite non-abelian groups include S,, (all permutations of {1,2,...,n}) for n > 3, which
has n!, and D,, (all rigid motions of a regular n-gon) for n > 3, both under the operation of
composition. In S, every pair of disjoint permutations commute, but nondisjoint permutations
may or may not commute: in Sz, (12) and (13) don’t commute while (123) and (132) do

commute (they are inverses).

8. The motions of the Rubik’s cube under composition are a huge group, of order

8112138212

533 = 43,252,003, 274, 489, 856, 000 = 22734537211.

~4.3-1019

9. The group Z is cyclic, with generator 1 or —1.

10. The group Z,, is cyclic, with generator 1 mod m or more generally a mod m when (a, m) = 1.

For instance, additive generators of Zg are 1, 3, 5, or 7 mod 8.
11. The group p, is cyclic, with a generator cos(27/m) + i sin(27/m).
Non-examples

1. The sets Z, Q, R, C, and Z,,, under multiplication are not groups since 0 has no inverse.

2. The non-zero integers Z — {0} under multiplication are not a group since most integers (in fact

all of them except £1) have no inverse for multiplication in Z — {0}.

3. The set of 2 x 2 integer matrices with non-zero determinant is not a group under multiplication

because some (in fact most) such matrices don’t have a matrix inverse with integer entries.

4. The group Q under addition is not cyclic: no fraction has all its (additive) multiples equal to
all of Q.

5. Every cyclic group is abelian but many abelian groups are not cyclic. For instance, all U(m)

are abelian and many are not cyclic; the first three noncyclic U(m) are U(8), U(12), and U(15).



3

Subgroups

Definitions and Theorems

1.

A subgroup of a group G is a subset H of G that is a group using the same operation that G
has. (Associativity on a subset is automatic, and if G is an abelian group then commutativity
of the operation on a subset is automatic. The identity element and inverses in a subgroup

have to be the same as in G.)

. A cyclic subgroup H is a subgroup that is a cyclic group in its own right: H = {(a) = {a™ :n €

Z} for some a € H.

An abelian subgroup H is a subgroup that is an abelian group in its own right: hk = kh for all
h, k€ H.

The center Z(G) of a group G is all elements of G that commute with everything in G:
Z(G)={z€ G:zg=gzforall g € G}.

Theorem. Every subgroup of an abelian group is abelian and every subgroup of a cyclic group
is cyclic. The first result only relies on some very simple reasoning (and knowing what the

words mean), but the second result requires a clever idea (using division algorithm in Z).

Examples

1.

10.

In Sy, (12) and (34) commute and H = {(1), (12), (34), (12)(34)} is an abelian subgroup of Sy

that is not cyclic (every element squares to (1)).

. In Sy let g = (1234). Then g% = (13)(24), ¢® = (1432) = (4321), and g* = (1), so {g) =

{(1), (1234), (13)(24), (4321)}.

Subgroups of Z include the even integers 2Z = {2m : m € Z}, and more generally aZ = {am :

m € Z} for a € Z. (In fact it is a theorem that every subgroup of Z is aZ for some integer a.)
In R*, the subset R~ of positive numbers is a subgroup.

In R*, the subset (2) = {2" :neZ}=1{...,1/4,1/2,1,2,4,...} is a subgroup.

In C*, the subset S = {z € C: |z| = 1} is a subgroup.

In GLa(R), one cyclic subgroup is {(37):n e Z}={({ )" :neZ}=(({1)).

Subgroups of GLa(R) include Aff(R) = {(g %) : a € R*,b € R} and SLy(R) = the 2x2 matrices
with determinant 1. These are both non-abelian, but the subgroup of diagonal matrices (& 9)

where a,b € R* is an abelian subgroup.
The alternating group A,,, which is all even permutations in S, is a subgroup of .S,,.

Every group G has the subgroups G and {e}. If a subgroup contains a then it must at least

contain (a), but could be larger.



11. The group S, is not cyclic for n > 3 since it is non-abelian for n > 3. While S, for n > 3 does

not have a single generator, it is generated by all the transpositions (ij).

12. The center of a group is a subgroup of G. If G is abelian then Z(G) = G, and conversely.
Having Z(G) be a “small” subgroup of G is a measure of G being highly non-abelian.

13. The center of GLy(R) consists of the scalar diagonal matrices {(¢%) : @ € R*}. This is
determined by testing commutativity with a couple of basic matrices like (1) and (19).
Note these have determinant 1, so they also show the center of SLo(IR) is the scalar diagonal

matrices with determinant 1, which is +1.

14. The Rubik’s cube group has a center of size 2: the identity and the “superflip” move.
Non-examples

1. In Z, while the even integers 2Z are a subgroup, the odd integers 1 + 27Z are not a subgroup

(no identity, not closed under addition).

2. In R*, while the positive numbers R~ are a subgroup, the negative numbers R are not a

subgroup (no identity, not closed under multiplication).

3. Even though R* is a subset of R and each is a group under a suitable operation (addition for
R, multiplication for R*), we do not consider R* to be a subgroup of R since the operations

are not the same.

4. In the group R, the subset of positive real numbers is closed under addition but is not a
subgroup of R since there is no additive identity. The subset R>( of nonnegative numbers is
not a group (under addition) even though it has an identity since additive inverses generally

fail to exist in R>g.



4 Order

Definitions and Theorems

1. The order of a subgroup H C G is the size of H and is denoted |H|. When H is infinite, often

we write |[H| = oo
2. The order of an element g € G is the size of (g) and is denoted |g|, so |g| = |{(g)].

3. Theorem. If |g| < co then |g| is the smallest n > 1 such that g™ = e. If |g| = oo there is no
n > 1 such that g™ =

4. Theorem. If |g| = n is finite then {(g) = {1,9,...,¢" '} and ¢' = ¢/ <= i = j mod n. We
have |gF| = n when (k,n) =1 and |g%| = n/d if d | n.

Examples

1. We have |Z,,| = m, |S,| = nl, |A,] = n!/2, and |D,| = 2n. The order of U(m) is denoted
w(m), so p(4) = |{1,3 mod 4}| = 2 and ¢(5) = |{1,2,3,4 mod 5}| = 4.

2. In Z, every integer besides 0 has infinite order under addition, while 0 has order 1.

3. In the group R*, 1 has order 1, —1 has order 2 (because (—1)? = 1 while (—1)! # 1), and

every non-zero real number besides +1 has infinite order.

4. In C*, —1 has order 2 and ¢ has order 4. The complex number cos(27/n) + isin(27/n) has
order n. Most non-zero complex numbers, like most non-zero real numbers, have infinite

multiplicative order.

(V31

. In Sy, [(1234)] = 4: (1234)% = (13)(24), (1234)3 = (1432) = (4321), and (1234)* = (1). More
generally, in S, a k-cycle (i14s . ..14) has order k.

6. In a finite group every element has finite order. In Z,, the order of a mod m is m/(a,m). In

U(m) there is no simple formula for the order of an element (other than +1 mod m).
Non-examples

1. If g" = e in a group, this does not imply |g| = n. Consider (—1)* = 1 in R* and —1 has order
2, not 4. What ¢™ = e implies is that |g| < n. In fact, g" = e < |g| | n.

2. In 83, [(12)] = [(23)] = 2 and [(12)(23)] = [(123)] = 3, so |(12)(23)] # |(12)[[(23)]-

3. In GLa(R), (73 9) and (=} 1) both have order 2, but their product (7§ 9) (75 71) = (1)

1
1
has infinite order (for n € Z, (§1)" = (§ 1)), so in some groups two non-commuting (!)

elements with finite order can have a product with infinite order.



5 Cosets

Definitions and Theorems

1. For a subgroup H in a group G, a left coset of H is a subset of the form gH = {gh : h € H}
and a right coset of H is a subset of the form Hg = {hg : h € H}. A coset is usually not a
subgroup but can be viewed as a “translated subgroup” from either the left side or right side.

When G is non-abelian, gH need not equal Hg as subsets of G.

Additive notation: a left coset is g+ H = {g+h : h € H} and a right coset is H+g={h+g¢:
h € H}. Since + is commutative we have g+ h=h+ g forall h € H,so g+ H = H + g as
subsets of G.

2. A representative of a coset (gH or Hg) is any element in the coset.
Examples
1. In Z, 3+ 2Z = 1+ 2Z and this is not a subgroup of Z.

2. InZ,14+22=342Z=5+27Z=—1+ 27 = a+ 27 for each odd integer a (that is, each a in
the coset 1 + 2Z).

3. In Sy, let H = ((1234)) = {(1234), (13)(24), (1432), (1)}. Then

(12)H = {(234),(1324),(143),(12)}
H(12) = {(134),(1423),(243),(12)}
and
(13)H = {(12)(34),(24), (14)(23), (13)}
H(13) = {(14)(23),(24),(12)(34), (13)}.

Thus (12)H # H(12) while (13)H = H(13).

4. In Dy let H = (s) = {1,s}. Then rH = {r,rs} and Hr = {r,sr}. Since rs # sr in Dy, the
left and right cosets rH and Hr are different (their intersection is {r}).

5. In Dy, let H = (s) = {1,s}. Then rsH = {rs,rs?} = {rs,r} = rH (see previous example).
Both r and rs are in this coset and they represent the same left H-coset.

Non-examples

1. In Sy let H be the subgroup {(1), (12),(34), (12)(34)}. For g = (1234) we have

gH = {(1234), (134), (123), (13)},
Hg = {(1234), (234), (124), (24)}

so gH # Hg.



6 Dihedral Groups (review)

Definitions and Theorems
1. For n > 3, the group D,, is {1,7,72%,...,r" ! s,rs,r?s,...,7""1s} where r has order n, s has

order 2, and sr = r~'s. The order of this group is 2n.
2. Theorem. For all k € Z, sr* =r~Fs.

3. Theorem. The center of D,, is {1} is n is odd and {1,7"/?} is n is even.

Examples

1. In Dy, rsr2s3r3s = rsr2sr3s = rr2ssri3s = r~1rds = r2s.

n

2. In D,,, the reflections are s,rs,...,r" 's and all have order 2. In particular, rs has order 2,

so |rs| = 2 while |r||s| = n -2 = 2n. Thus |rs| # |r||s]|.

3. The only rotation of order 2 is 7"/ (180-degree rotation) for even n.



7 Index and Lagrange’s Theorem
Definitions and Theorems

1. Theorem. If H is a subgroup of a group G then different left cosets of H are disjoint.
Equivalently, if gH N g'H # () then gH = ¢'H. In particular, if ¢ € gH then ¢ H = gH.

Each left coset gH has the same cardinality as H: H — gH by h — gh is a bijection between
H and gH.

Similar results hold for right cosets: if HgNHg' # 0 then Hg = Hg', and H — Hg by h — hg
is a bijection between H and Hyg.

2. The index of a subgroup H in G is the number of different left cosets of H in G. This is also
the number of different right cosets of H in G. It is denoted [G : H].

3. Theorem. (Lagrange) If H is a subgroup of a finite group G then |G : H||H| = |G|. In

particular, in a finite group each subgroup has order dividing the order of the group.

4. Theorem. The order of each element of a finite group G divides the order of G. In particular,
g/l =€ for all g € G. (For abelian G this can be proved without using Lagrange’s theorem.)

5. Theorem. (Fermat) For prime p, if a Z 0 mod p then a?~! = 1 mod p. This is the special
case of Theorem 4 for G = U(p).

6. Theorem. (Euler) For m > 2, if (a,m) = 1 then a¥™ =1 mod m. This is the special case
Theorem 4 for G = U(m).

Examples
1. For a subgroup H of a finite group G, [G : H| = |G|/|H].
2. [Z:mZ] = |{mZ,1+mZ,...,m—1+mZ} =m for each positive integer m.
3. [R* : Rsg] = 2 since R* = R59 U =R+ (cosets are positive and negative real numbers).

4. [R* : {£1}] = oo since each coset is of the form z{+1} = {x, —z}, a pair of numbers equal up

to sign, and there are infinitely many such cosets in R*.

5. [R: Z] = co: the different cosets a + Z are represented by the real numbers a in the interval
[0,1).

10



8

Conjugation

Definitions and Theorems

1. In a group G, we call elements x and y conjugate if y = grg~' for some g € G.

2. The conjugacy class of x € G is {gzg™* : g € G}.

3. In a group G, we call subgroups H and K conjugate if K = gHg~' = {ghg™' : h € H} for
some g € G.

4. Theorem. Different conjugacy classes in a group are disjoint. FEquivalently, if two conjugacy
classes in a group overlap then they are equal.

5. Theorem. If H is a subgroup of G then gHg™ ' is also a subgroup of G for each g € G. (This
is a contrast with cosets gH of H, which are never subgroups except for the coset H itself.)

6. Theorem. For g € G and a subgroup H of G, the conditions gH = Hg and gHg™' = H are
equivalent.

7. Theorem. For a subgroup H of G, gHg™' = H for all g € G if and only if gHg~' C H for
all g € G.

Examples

1. In Dy, the conjugacy classes are {1}, {r?}, {r,r3}, {s,r2s}, {rs,r3s}.

2. In D, all reflections are conjugate when n is odd (each reflection is across a line through a
vertex and the center of the opposite edge) and there are two conjugacy classes of reflections
when n is even (reflection across a vertex-vertex line vs. across a vertex-opposite edge line).

3. In S, all transpositions are conjugate to (12): if i # 1,2 and j # 1,2 then

(i) = (14)(27)(12)(2)(L4) = (10)(27)(12)((L1)(27))
If i =1 and j # 1,2 then (ij) = (15) = (25)(12)(27) = (25)(12)(25)~ L. If i = 2 and j # 1,2
then (ij) = (2j) = (1)(12)(1j) = (17)(12)(15) "

4. For a k-cycle (iyiz...ix) and o € Sy, o(iriz...ix)o~ ! = (0(i1) o(iz) ... o(ix)) is also a k-
cycle. This explams the previous example: if i # 1,2 and j # 1 2 then (ij) = o(1 ) —! where
o= (11]2112)’ ifi =1and j # 1,2 then (ij) = (1j) = 0(12)0~! where o = ( ) , and if
i=2and j # 1,2 then (ij) = (2j) = 0(12)0~! = ¢(21)0~!, where o = (Jll) (1]).

5. In Sy let H be the subgroup {(1), (12), (34), (12)(34)}. For g = (1234) we have g~ = (4321)

and

(1234)(1)(4321) = (1) (1234)(12)(4321) = (23)
(1234)(34)(4321) = (14) (1234)(12)34)(4321) = (14)(23),

11



gHg™" = {(1),(14), (23), (14)(23)} # H.

Non-examples

1. The rotations r and 2 in D, are conjugate in Dy: srs~! = 3. But r and r> are not conjugate
in the subgroup (r) since this subgroup is abelian and different elements of an abelian group

are not conjugate in that group.

2. Since |gHg™'| = |H| when H is finite, to prove gHg™*

to show gHg~! C H (that is, ghg~! € H for all h € H). But there are infinite subgroups
H C G where, for specific g € G, gHg™' € H and gHg™! # H. For example, let G =
Af(R) = {(§%) :a € RX,b e R} and H = ((31)) = {(}7) s n € Z}. It g = (39) then
gt = (162(1’) and g (§%) g™ = (32%), s0 gHg ' = {({ %) : n € Z} is a proper subset of
H (it does not contain (§1)). Moreover, g=' (§1)g~" = ("

have gHg™! C H and g~ 'Hg ¢ H!

= H for a specific g € G it suffices

{2) ¢ H, so in this example we

12



9 Normal subgroups, quotient groups
Definitions and Theorems

1. A subgroup N in a group G is called normal if its left and right coset by each g € G is the
same: gN = Ng for all g € G. (Warning: saying gN = Ng means the two sets gN and Ng
are equal, not necessarily that gn = ng for all n € N.) The notation for N being a normal
subgroup of G is N <t G and we often write gN as g.

2. Theorem. FEvery subgroup of a group with index 2 is a normal subgroup.
3. [Sn : A,] = 2 and therefore A,, is a normal subgroup of S,, since it has index 2.

4. If N is a normal subgroup of G then its cosets can be multiplied by the rule gN - ¢'N = g¢'N
(or g- g’ = gg’). This is well-defined (that is, independent of the representatives used for the
two cosets of N) and makes the cosets of N in G into a group called the quotient group or
factor group of G modulo N, and denoted G/N. Its order is [G : N], the identity is 1 = N,
and (gN)~' =g 'N (that is, g~ ! = g—1).

5. Theorem. Let N < G. If G is abelian then G/N s abelian. If G is cyclic then G/N is cyclic.
Examples

1. In a group G, the center Z(G) is a normal subgroup.

2. In an abelian group every subgroup is normal. The converse is false: every subgroup of Qg is

normal but Qg is not abelian.

3. In R, 27Z is a subgroup that is automatically normal since R is abelian, and the quotient
group R/277Z has coset representatives a € [0,27). Cosets in R/277Z look like angles on a
circle using radian measure, e.g., —m = 7 in R/27Z just as —m and 7 are the same angle in
radians. The real numbers equal to 0 in R/277Z are the integral multiples of 2. Addition in

the quotient group R/27Z is the same as adding angles up to an integral multiple of 27.

4. The center of Dy is N = {1,72}. What “is” the group Dy/N? It has order 4. Is it abelian? Is
it cyclic? Writing out the cosets (left vs. right doesn’t matter since N <1 Dy), we get

I=N={1,r%, 7=rN={rr},

5=5sN = {s,5r%} = {s,7%s}, T5=rsN = {rs,rsr’} = {rs,r’s}.

These are disjoint and fill up all of Dy, so we are done with the listing of cosets. The identity
in Dy/N is1=N.

In the group Dy/N, 72 = 72 = T since 72 € N. (More explicitly in terms of cosets, (rN)? =
rNrN = r2N = N since r? € N.) Thus 7 has order 2 in Dy/N even though 7 has order 4 in

Dy (a certain amount of collapsing has happened). Also 52 = s2 = T and 752 = (rs)2 =

13



since (rs)? = 1 (check that algebraically, or see that s is a reflection). Thus each non-identity
element of Dy/N has order 2, so Dy/N (having order 4) is not cyclic. Writing Dy/N =
{1,7,5,75}, we have 7-3 = 5T since the left side is 7s = rsN and the right side is 57 = srN =

r3sN = rsN (the N-coset containing 73s is 7sN), so D4/N is abelian even though D, is not.

. In S let N be the subgroup {(1),(12)(34), (13)(24), (14)(23)} (identity and all products of
disjoint 2-cycles). For g = (1234) we have

gN = {(1234), (13), (1432), (24)}
Ng ={(1234), (24), (1432), (13)},

so gN = Ng for this one g. To prove gN = Ng for all g € S, it suffices to check that
equation for a set of permutations that generates Sy, such as (12), (23), and (34). Check that
(12)N = N(12), (23)N = N(23), and (34)N = N(34).

. In the group Sy the subgroup N = {(1), (12)(34), (13)(24), (14)(23) } is normal (see the previous
result). The number of cosets of N in Sy is [Sy : N] = |Sy4|/|N| = 24/4 = 6. The 6 cosets

()N, (12)N, (13)N, (23)N, (123)N, (321)N

are distinct, either by tedious direct calculation or by the following conceptual reasoning: if
aN = bN for a,b taken from {(1), (12), (13), (23), (123), (132)} then ab~! € N, and the chosen
representatives belong to Ss, so ab~! € S3N N = {(1)}, and thus a = b. Hence for different a
and b in S3 we have alN # bN. Therefore the above listing of 6 cosets, each of order |N| = 4,
exhausts the group Sy (of order 24 =6 - 4).

Since N <1 Sy, the group law in S4/N is (¢N)(hN) = ghN. From the choice of coset represen-

tatives above, the group law on S;/N resembles the group law in Ss.

In Sy let H be the subgroup {(1), (12), (34), (12)(34)}. For g = (1234) we have gH # Hg since

gH = {(1234), (134), (123),(13)},
Hg = {(1234), (234), (124), (24)}

. Let G = Sy and let H = {(1),(12), (34), (12)(34)}. The operation (aH)(bH) = abH is not
well-defined on left H-cosets. That is, if aH = a’H and bH = b'H, it not always true that
abH = oa'b’'H. Consider the left cosets

(13)H = {(13), (123), (134), (1234)}, (14)H = {(14), (124), (143), (1243)}.
Then (13)H = (134)H and (14)H = (143)H, but (13)(14)H = (143)H = (14)H while

H
(134)(143)H = (1)H = H. Since H # (14)H (for example, (14) € (14)H but (14) € H),
we get (13)(14)H # (134)(143)H.
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Non-examples

1= (rsr7t) =

(r?s) = {1,725} # (s). Also (r?) = {1,7?} is a subgroup of order 2 that is normal (this is the

center of D), so cyclic subgroups of a group with the same size need not both be normal or

1. In Dy, (s) = {1, s} is a subgroup of order 2 that is not normal since r{s)r

both be non-normal.
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10 Homomorphisms

Definitions and Theorems

1. A homomorphism from the group (G,-) to the group (H,o) is a function f: G — H that

transforms the operation in G to the operation in H:

f(g1-92) = f(g1) © f(g2)

for all g1,92 € G. The set f(G) = {f(g) : g € G} of all values f has in H is called the image
of f.

2. The kernel of a homomorphism f: G — H is the elements in G mapped to the identity in H:
ker f={g€G: f(g) =en}

3. Theorem. If f: G — H is a homomorphism then f(eg) = en, f(g)™ = f(g)™ for all g € G
and n € Z, ker f is a subgroup of G, and image f(G) is a subgroup of H.

(If either group is written additively then the identities change: f(0) = 0 and f(ng) = nf(g)
if both groups are additive, f(0) =1 and f(ng) = f(g)™ if only the first group is additive, and
f(1) =0 and f(g"™) = nf(g) if only the second group is additive.)

4. Theorem. For every homomorphism f: G — H the kernel ker f is a normal subgroup of G.
5. Theorem. A homomorphism is injective if and only if its kernel is trivial.
6. Theorem. For a homomorphism f: G — H and g € G of order n, f(g) has order dividing n.

7. Let G be a group and N be a normal subgroup. Then there is a “canonical” reduction
homomorphism r: G — G/N called reduction mod N, defined by r(g) = gN =g for all g € G.

Examples

1. Doubling is a homomorphism f: Z — Z where f(a) = 2a for all a € Z. Being a homomorphism
means 2(a+b) = 2a+ 2b, which is a special case of the distributive property for multiplication
over addition. This homomorphism is injective but it is not surjective: its kernel is {0} and

its image is 2Z.

2. In an abelian group G, (91g2)* = g¥gh for all g1, 92 € G and k € Z, so for each integer k the
kth power function f(g) = ¢g* is a homomorphism G — G. (If G is written additively the
identity becomes k(g1 + g2) = kg1 + kgo. The previous example is the special case G = Z and

k = 2, using additive notation.) If k = —1 the kth power homomorphism is inversion on G

and this function is its own inverse since (¢g~!)~!. For a non-abelian group, inversion g ~— ¢g~!

-1 1

is not a homomorphism since (gg')~! = (¢')"tg~!, which usually is not g=!(¢’) .

1

3. For fixed g € G, conjugation by g is the function f: G — G by f(x) = gxg—'. This is an

homomorphism from G to itself.
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4. Reduction modulo 2 is a homomorphism f: Z — Zs, since f(a+b) = a+bmod 2 = a mod 2+
bmod 2 = f(a) + f(b). This homomorphism is surjective but not injective. More generally,
for each integer m > 2 the reduction r: Z — Z,, where r(a) = a mod m is a homomorphism

that is surjective but not injective.

5. For an m X n real matrix A, the function L4: R™ — R™ where L4(v) = Av is additive, so it
is a homomorphism (R™ and R™ are additive groups) and ker Ly = {v € R": Av = 0} is the
null space of A.

6. If N < G then the reduction mapping r: G — G/N where r(g) = gN is a homomorphism by
the definition of the group operation in G/N and it is surjective with kernel N.

7. If f: G — G is a homomorphism and N <1 G, the image f(IN) need not be a normal subgroup
of G. For example, in Dy if G = (s) = {1,s} and G = D3, and f: (s) — Ds is the inclusion
function, then (s) <1 (s) but f((s)) = (s) 4 Ds.

8. The exponential function exp: R — R is a group homomorphism since e**¥ = e%e¥, and
the natural logarithm In: Ryo — R is a group homomorphism since In(ab) = Ina + Inb. That
a homomorphism f: G — H satisfies f(¢") = f(g)" is related to the equations ™ = (e*)"
(homomorphism from an additive to multiplicative group) and In(z") = nlnz (homomorphism

from a multiplicative to additive group).

9. The sign function sign: R* — {£1}, sending each non-zero real number = to its sign, is a

homomorphism that is surjective with kernel {z € R* : z > 0} = Ry,

10. Since det(AB) = det Adet B for all A and B in M3(R), the determinant is a homomorphism
det: GL(R) — R* with kernel SLy(R) and image R* since a = det(&9).

Non-examples

1. The determinant is a multiplicative function det: My(R) — R, but this is not a homomorphism

since M3(R) and R are not groups under multiplication.

2. On a non-abelian group G, inversion i: G — G is never a homomorphism. We have i(g1g>) =
(9192)7' = g5 "9 = i(g2)i(g1), so inversion actually reverses the order of multiplication. That

is not a full proof of inversion not being a homomorphism. If inversion were a homomorphism

then i(g1g2) = i(g1)i(g2) = g1 '9; * = (g201) 7" for all g1, 92 € G, so we'd have (g1g2) ™" =
(g291)~t. Inverting both sides, g1g2 = gog1 for all g1, g2 € G, which means G is abelian, a

contradiction.
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11 Isomorphisms

Definitions and Theorems

1. An isomorphism from the group G to the group H is a bijective homomorphism f: G — H.
When there is an isomorphism from G to H we say G and H are isomorphic and write G = H.

2. Theorem. FEvery infinite cyclic group is isomorphic to Z.
3. Theorem. Every finite cyclic group of order n is isomorphic to Z,.
4. Theorem. If f: G — H is an isomorphism then it satisfies the following properties:

e g has order n if and only if f(g) has order n,

e g and g commute in G if and only if f(g) and f(g') commute in H,

e g and g’ are conjugate in G if and only if f(g) and f(g') are conjugate in H,

e f(Z(G))=Z(H) (so Z(G) = Z(H) using the isomorphism f from G to H),

o G is abelian if and only if H is abelian, and G is cyclic if and only if H is cyclic.

All of these equivalences are in general false if |G| > 1 and f: G — G is the trivial homomor-

phism,which is not an isomorphism.
5. First Isomorphism Theorem. If f: G — H is a homomorphism and K = ker f, then G/K
is isomorphic to the image f(G) by the mapping gK — f(g) for all gK € G/K.

In terms of the reduction homomorphism r: G — G/K, there is a unique isomorphism
f: G/K — f(G) such that the diagram below commutes: f = for.

Ve
R
<l
Q

Examples

1

1. For fixed g € G, conjugation by ¢ is the function f: G — G by f(z) = grg~*. This is an

isomorphism of G with itself.

1

2. When G is an abelian group, inversion g — g~ is an isomorphism of G with itself.

3. The exponential function exp: R — Rs( and the logarithm In: Ry — R are isomorphisms

between R and R+, and are inverses of each others.

4. Since det: GL2(R) — R* is a homomorphism with kernel SLy(R) and image R*, because
a=det(29), GLa(R)/SLy(R) = R* by the first isomorphism theorem.

5. The sign function sign: R* — {+£1} sending each non-zero real number z to its sign is a
homomorphism that is surjective with kernel {z € R* : z > 0} =Ry, so R* /Ry = {£1}.
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Non-examples

1. From Example 6 in Section 9, the subgroups H and N of Sy are both isomorphic to Z2 but H

is not normal in S; while N is normal in Sy.

2. For odd primes p, the Heisenberg group

Heis(Z,) = ta,b,c€Zy

S O =
S = Q
o

is a non-abelian group of order p® in which all non-identity elements have order p. The group
Zf, is an abelian group of order p? in which all non-identity elements have order p. Thus
Heis(Z,) and Zf, have the same number of element of each order, but they are not isomorphic

(one group is abelian and the other is not.)

3. The simplest reason two finite groups would not be isomorphic is that they don’t have the same
size. For prime p we will describe two finite groups of the same order built from GL2(Z,), one
a subgroup and the other a quotient group. Then we will determine whether or not the two
groups are isomorphic.
Subgroup of GLs(Z,). The first group is SLa(Z,). The determinant det: GL2(Z,) — U(p) is
a homomorphism that is surjective (same proof as for real matrices) with kernel SLy(Z,), so
GL2(Zp)/ SLa(Zy) =2 U(p) by the first isomorphism theorem. Thus |GL2(Z,)|/| SL2(Zy)| =
[U(p)| =p—1, 50 | SLa(Zp)| = | GL2(Zy)|/(p = 1).
Quotient group of GLa(Z,). The second group is GL(Z,)/Z, where Z is the center of GLa(Z,).

The center is the scalar diagonal matrices (¢ %) = al for non-zero a in Z,: such matrices are

in the center, and conversely a matrix that commutes with (} 1) and (}9) is already scalar

diagonal. Thus |Z| = [{al2 : a € U(p)}| = p — 1. The center is a normal subgroup and the
quotient group GL2(Z,)/Z has order | GLy(Z,)|/(p — 1), which matches the order of SLy(Z,):
even though we have not listed here exactly what the order is, we found the same formula for
the order of SLy(Z,) and GL2(Z,)/Z.

Are these two groups isomorphic? To prove they are, we’d like to write down an isomorphism
between them. To prove they are not isomorphic, we need to find some group-theoretic property
that they do not share. Which way does it go?

For odd primes p we will show SL2(Z,) has a nontrivial center while GL2(Z,)/Z has a trivial
center, so they are mot isomorphic.

That SL2(Z,) has a nontrivial center can be shown with an explicit example: —I = (75 %)

is in SLo(Z,) and it’s not the identity since —1 # 1 in Z,, (here is where we use p # 2). Since
it is a scalar diagonal matrix, it commutes with all matrices in SLo(Z,,).

To show GL3(Zp)/Z is trivial, suppose in this group that (2Y) lies in its center. That

means (¢45)A = A(2Y) for all A € GLy(Z,)/Z. We want to deduce that (2%) is trivial
in GLy(Z,)/Z.
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The condition (¢ %) A = A(%}) means (%) and A commute “modulo Z”, which for A = (} })
and A = (179) says

b L1y (11 a b x 0

d 01/ \o1 c d 0 =

b 1 0

d 1 1

a (10 a b y 0
c 1 c d 0 y
for some non-zero = and y in Z,. These equations simplify to

a a+b\ [ z(a+c) z(b+d) a+b b\ ay by
¢ c+d | xe xd 7 c+d d ) \ (a+cy (b+dy

in GL2 (Zp) .

[SIES]

From the second row of the first equation we get ¢ = zc and c+d = xd. If x # 1 then ¢ = 0 by
the first equation, so the second equation becomes d = xd, so d = 0. But an invertible matrix
can’t have 2nd row (0 0), so = # 1. Arguing similarly with the second column of the second
equation we get b = by and d = (b+ d)y; if y # 1 then b = 0, so d = dy, so d = 0, making
the second column (8), which is impossible. Thus z = 1 and y = 1, which makes the above

equations

a a+b\ [ at+c b+d atb b\ a b
¢ c+d ) c d ’ c+d d )] \ a+c b+d |’
From the first equation, ¢ = 0 and @ = d in Z,. From the second equation, b = 0 and a = d

again. So (2%) = (89), which is in Z, so our original matrix is trivial in GL(Z,)/Z. That

completes the proof that GL2(Z,)/Z has a trivial center.
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12 Direct products
Definitions and Theorems

1. Theorem. Let G1,G4 be groups and let
G=G1 xGy={(g1,92) : g1 € G1 and g2 € Ga}.
Define a binary operation on G by
(a1,a2)(b1,b2) = (a1b1, asbs).

Then G is a group with respect to this operation. The identity is (e1,e2) and the inverse of
(91,92) is (97 " 95 1)

2. The group G = G1 x G5 in the previous theorem is called the (external) direct product of G,
and G5. This is a kind of “multiplication” of two groups. We start with G; and G2, and build
G1 x G5. Inside G x G are subgroups G1 x {e2} and {e;} x G2, which are isomorphic to Gy
and G4, respectively. Even if G; or G is non-abelian, in G7 X G5 the elements of G; commute

with the elements of Ga: (g1, 92) = (91, e2)(e1, g2) = (e1,92) (g1, €2).

3. The definition of direct products can be extended to more than two groups by induction, and
H?Zl G, is used as a shorthand for Gy x G X --- x G,,. f G1 =Gy =--- = G,, = G, then it
is common to write G™ for G x --- X G.
—————

n times

4. Theorem Let (g,h) € G x H. If g and h have finite orders m and n respectively, then the

order of (g,h) in G x H is the least common multiple of m and n.
5. Theorem The group Z,, X Ly, is isomorphic to Ly, if and only if ged(m,n) = 1.

6. Theorem. For groups G and G2, Gy x Go is abelian if and only if G1 and G2 are both

abelian.

7. Theorem. If G| and G2 are finite cyclic groups with relatively prime order then G1 x G is

cyclic. (The converse is false, e.g., Zs X Zo has order 4 and no element has order 4.)

8. Reversing the construction of direct products (passing from “multiplication” to “factoring”),
when is a group isomorphic to a direct product of two subgroups? Let G be a group with
subgroups H and K satisfying the following conditions.

e G=HK ={hk:he Hke K}
e HNK = {e}
e hk=Fkhforall k€ K and h € H.

Then G = H x K, where an isomorphism f: H x K — G is given by f(h, k) = hk. We say G
is the (internal) direct product of its subgroups H and K.
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Examples

e R" =R x --- x R is a direct product of n copies of R.
—_——
nm,times
e 7y X Zy and Zs X Z4 are direct products of abelian groups that are not cyclic: the first has
order 4 but each element has order 1 or 2, while the second has order 8 and each element has

order dividing 4.
e 7o X Zsg is cyclic: (1,1) is a generator.

e R* = {£1} x Ry since each non-zero real number has a unique expression in the form 4z for
some sign and some x > 0. This is an example of an internal direct product with H = {+1}
and K = R>0.

Non-examples

e In the group D,, we have subgroups H = (r) = {1,7,72,...,r" 1} and K = (s) = {1, s} with
D,, = HK (each element of D, is of the form ¢ or 7's for some exponent i) and HNK = {1},
but that does not mean D, = H x K. Indeed, H x K = (r) x (s) is abelian since H and
K are both abelian, but D,, is non-abelian. What goes “wrong” here is that elements of D,
written in the form 7% or 7's do not multiply componentwise, e.g., (1s)(rs) # rs®> = r. In
fact, (1s)(rs) = r~lss = r"~1 which is not r. (More generally, (r’s)(’s) = 7i~7, which is not

usually riris? = riti))
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13 Finite Abelian Groups

Definitions and Theorems

1. Theorem. If g and h commute and have finite order then |gh| = |g||h| if (|g],|h|) = 1. There
is no simple rule like this in general if (|g|, |h|) # 1.

2. Fundamental Theorem of Finite Abelian Groups Fvery finite abelian group G is iso-

morphic to a direct product of cyclic groups of prime-power order: if |G| > 1 then
G = Lo X Loz X -+ X Lyggen,s

where the p;’s are prime numbers that are not necessarily distinct and each a; > 1.

3. Theorem. If G is a finite abelian group and H is a cyclic subgroup of mazimal order, then
G = H x K for some subgroup K of G.

Examples

1. Every finite abelian group of order 4 is isomorphic to Zs X Zs or to Z4. Every cyclic group
of order 4 is isomorphic to Z4 and the noncyclic abelian groups of order 4 are all isomorphic
to Zg x Zs. For example, U(8) = {1,3,5,7 mod 8} and U(12) = {1,5,7,11 mod 12} are both
noncyclic of order 4 (each non-identity element has order 2), so U(8) and U(12) are both

isomorphic to Zo X Zs.

An example of an isomorphism f: Zo x Zy — U(8) is f(a,b) = 3%5° mod 8. This can be

discovered from writing

An example of an isomorphism f: Zo x Zo — U(12) is f(a,b) = 57" mod 12.

2. Every finite abelian group of order 6 is isomorphic to Zs x Zs, which is cyclic ((1,1) has order
6), so all finite abelian groups of order 6 are cyclic. For instance, U(7) and U(9) are both of
order 6 and thus are cyclic. Explicitly, U(7) = (3 mod 7) and U(9) = (2 mod 9).

Non-examples

1. In the non-abelian group Qs, H = (i) = {1,i,—1,—i} is a cyclic subgroup of maximal order
and we can’t write Qs = H x K for a subgroup K of Qs: if we could then |K| =8/4=2s0 K
must be {£1} since the only element of order 2 in Qs is —1, but H and {£1} don’t intersect
trivially (in fact {1} C H). Another problem is that H is abelian and K would have to be
abelian (all groups of order 2 are cyclic and thus abelian), so H x K would be abelian but Qg

is not abelian.
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14 Group actions (and orbits)
Definitions and Theorems

1. Let X be a set and G be a group. A (left) action of G on X is a map G x X — X given by
(g,x) — g + x where

ec.-x=zxforal z € X,

e g1 - (92 - x)=(g192) + x for all x € X and g1, g2 in G.

2. Let X be a set on which G acts. For each x € X, the orbit of x is defined to be
Oy, ={g:2:9€G}.

This is a subset of X. A fized point for the group action is an x € X such that g - © = x for
all g € G. The fixed points are the x € X where O, = {2} has size 1.

3. Let G be a group acting on the set X. For z € X, its stabilizer subgroup in G is
G,={9€G:g-xz=uza}.

(More suggestive notation is Stab, for G,.) This is a subgroup of G.

4. Theorem. Different orbits in a group action are disjoint.

If the orbit of x and the orbit of  in X overlap, say at z, then 2 = ¢ - z and z = ¢’ - y for

tea=g (g
orbit of x is in the orbit of y: for all h € G, h - x = h - ((97'¢') - y) = hg™'g’ - y is in the

/

some g and ¢’ in G. Then z = g~ - y) = (g7 'g') - y, so everything in the
orbit of y. A similar argument shows everything in the orbit of y is in the orbit of x, so the

two orbits agree. Thus two orbits in a group action that are not equal have to be disjoint.

This theorem generalizes the disjointness of different left cosets (and, separately, of right cosets)
and the disjointness of different conjugacy classes, since those are both examples of orbits for

a group action (Examples 6, 7 and 9 below).
5. Theorem. Ify =g - x for some g € G then {h € G :y =h - z} is the left coset gG,.

6. Theorem. Ify = g - x for some g € G then G, = gG,g™ ", so stabilizer subgroups of different

points in the same orbit are conjugate subgroups.

7. Theorem (Orbit-stabilizer formula) If G acts on X and x € X, the elements in the orbit of
x correspond to left cosets of the stabilizer G,: g + © <— gG, for all g € G. In particular,
when G is finite

G|
0. =[G:G,] = .
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8. Theorem. (Fixed-point congruence) If G is a finite group with order equal to a power of a
prime p then
| X| = |Fix(X)| mod p,

where Fix(X) is the set of fized points for the group action.

This theorem is useful in at least two ways: if | X| is not divisible by p, the congruence shows
Fix(X) is not empty, since its size is non-zero mod p and thus can’t be 0, and also if | X]| is
divisible by p and we know Fix(X) is not empty (so its size is greater than 0), we know Fix(X)

has size at least p.

Examples

1. The group G = S,, has a natural action on the set X = {1,2,...,n} by permutations. The
second group action axiom in this case says o(7()) = (o7)(i) for o,7 € S, and 1 < i < n,
which is how the product (composite function) o7 = o o 7 is defined. This action has a single
orbit, because for any distinct z,y € X, the transposition (zy) is an element in S,, sending

to y.

2. The group R acts on the set R by translations: a - * =z +a. We have 0 - x =2+ 0 =z and
(a-(b-2)=(@+b)+a=z+(a+b) =(a+b) -z

3. The group R* acts on the set R by multiplications: a - £ = az. We have 1 - z = (1)(z) =«
and (a + (b - x)) = a(bx) = (ab)x = (ad) - z.

a 1

4. The group R* acts on the set R+ by exponents: a - x = z%.
(a-B-2)=@"=2%=ab - z.

We have 1 - £ = 2+ = x and

5. The group G = GL2(R) has a natural action on X = R? by
A.-v=Av

for all A € GL2(R) and v € R?. The second group action axiom in this case says A(B(v)) =
(AB)(v) for A, B € GL2(R) and v € R?, which is one of the rules for how matrix multiplication

works.

For each non-zero v in R?, its stabilizer subgroup in GLa(R) is all A € GLy(R) such that
Av = v: A has v as an eigenvector with eigenvalue 1. For example, if v is on the z-axis and
not equal to O then for A = (29),

1 b
Av—v<:>A—{<O d):d#O}.

For A € GLy(R), its fixed point set {v € R? : Av = v} is the set of vectors in R? that are
eigenvectors of A with eigenvalue 1. If A does not have 1 as an eigenvalue then the only vector
in R™ fixed by A is 0.
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. Let G be a group and H be a subgroup of G. Then the group H acts on the set X = G by
left multiplication:
h-g=hg

for all h € H and g € G. The H-orbit of gis {h - g: h € H} = {hg : h € H}, which is the
right coset Hg.

. Let G be a group and H be a subgroup. We can describe left H-cosets in G as orbits of the group

L. (We need to multiply

H acting on the set G by “right-inverse” multiplication: g - h = hg~
on the right by the inverse of g in order to have an action satisfying g1 - (92 + ) = (g192) - =

in general.) The H-orbit of gis {h - g:he€ H} ={gh ™' :he H} ={gh:he€ H} = gH.

. Let X = R and G = Z and consider the group action n-x = n+xz for alln € Z and x € R. Since
Z is a subgroup of R this group action can be seen as a special case of the action considered
in Examples 6 and 7. The orbits for this action of Z on R are the cosets x + Z for x € R. All
orbits are infinite, so this group action has no fixed points (no orbit has size 1).

. Let G be a group. Then G acts on itself (X = G) by conjugation: for g € G and x € G,

g-x=gzg "

for all g € G and x € G. The orbit of x € G is {gzg~! : g € G}, which is the conjugacy class of

=2} ={g € G:gx=uxg} is the centralizer

x. The stabilizer subgroup G, = {g € G : gzg~
of z in G, denoted as Z(x). The set of fixed points for the conjugation action of G on itself is

{z € G: gz = zg for all g € G}, which is the center Z(G).

By the orbit-stabilizer formula the conjugacy class of z, which is an orbit {gzg~! : g € G} for
the conjugation action of G on itself, has size |G|/|Z(z)| where Z(z) = {g € G : gx = zg}. If
{z1,...,z,} represents the different conjugacy classes in G then

k r |G|
Gl=> 100l =) 7~
- 212z
which expresses |G| as a sum of integers that are each factors of G.

The conjugacy classes of size 1 are the elements in the center Z(G), and if we collect those

counts of 1 together then the above equation becomes

k
6= 2@+ Y o

where x1, ..., 2 represent conjugacy classes of size greater than 1 and Z(G) = {zg41,..., 2}
This is called the class equation for G. For example, when G = Sj3 its center is trivial and its
other conjugacy classes are the three 2-cycles and the two 3-cycles. The class equation in this

case says 6 = 14+ 3 + 2. When G = Zg, the class equation says 6 = 6.
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10. Let G be a group. Then G acts on the set of its subgroups by conjugation: for g € G and a
subgroup H C G,
g-H=gHg'

for all g € G and H C G. The orbit of a subgroup H is {gHg™ ! : g € G}. The stabilizer
subgroup of H is {g € G : gHg~! = H}, which is called the normalizer of H in G and written
as N(H). The subgroup N(H) contains H and is the largest subgroup of G containing H and
in which H looks normal.

11. Let G = D,, = (r,s) where s is reflection across the z-axis in C and r is rotation by 27 /n
radians about the origin. If we let X = C then the n-th roots of unity can be considered as
the vertices of a regular n-gon inscribed in the unit circle with center 0 and one vertex at 1.
This inspires us to define the group action of D,, on C by

rz = (cos(2w/n) +isin(27/n))z and sz =2Z.

Here multiplication by cos(27/n) + i sin(27/n) is a counterclockwise rotation by 27/n radians
(this may be easiest to see if z is written in polar coordinates) and Z is complex conjugation

(reflection across the real axis).

The transformations r and s can be described as 2 x 2 matrices:
cos(2m/n) —sin(27/n) 1 0
= and s = .
sin(2w/n)  cos(2w/n) 0 -1
This lets us view D,, as a subgroup of GLs(R).

The numbers fixed by s are those in R because real numbers are the only numbers fixed by
complex conjugation and and the only fixed point of r is 0 because the only fixed point of a
rotation in a plane is the center of the rotation. If x is a vertex of the regular n-gon then its
stabilizer subgroup in D,, is a subgroup of order 2 generated by the line of reflection through

x. If x is any other point on the regular n-gon then its stabilizer subgroup is trivial.

Non-examples

1. For a group G and subgroup H, right multiplication i - g = gh is usually not a group action
of H on G since (hy + (he - g)) = ghahy = (hah1) - g, which is usually not (hi1hs) « g = ghihs.

2. Multiplication of R on R, where a - = ax, is not a group action even though (a - (b - z)) =
ab - x, since the group R that is acting is a group under addition, not multiplication. The

formula a - = = ax is a group action of R* on R.
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15 Cauchy’s theorem and the Sylow theorems
Definitions and Theorems

1. Cauchy’s Theorem. Let G be a finite group and let p be a prime number such that p divides
|G|. Then G contains a subgroup of order p.

Since subgroups of prime order are automatically cyclic, an equivalent formulation of Cauchy’s
theorem is that if p divides |G| then G contains an element of order p. This theorem can be
proved in two ways: (i) induct on |G| and treat abelian and non-abelian groups separately,
applying the class equation for the non-abelian case, (ii) look at solutions in G to the multi-

variable group equation gigs - -- g, = e and let Z, act on these solutions by cyclic shifts.

2. A p-subgroup of G is a subgroup of G that has p-power size. Writing |G| = p*m where p does
not divide m, a Sylow p-subgroup (also called a p-Sylow subgroup) of G is a subgroup of G
with order p*. (When p is not a factor of |G| the Sylow p-subgroups of G are trivial.)

3. First Sylow Theorem. Let G be a finite group and p be a prime. There is a Sylow p-subgroup

of G: writing |G| = p*m where p does not divide m, G contains a subgroup of order p*.

In fact if p” is any power of p dividing |G|, not just the largest such power of p, then G has
a subgroup of order p”. Such nonmaximal p-subgroups in G do not fit the second and third

Sylow theorems below.

4. Second Sylow Theorem. Let G be a finite group and let p be a prime dividing |G|. Then
all Sylow p-subgroups of G are conjugate. That is, if P and Q are two Sylow p-subgroups of
G, then there exists g € G such that gPg~' = Q.

A consequence of the conjugacy of all Sylow p-subgroups of G, for a specific prime p, is that
a Sylow p-subgroup P of G is a normal subgroup of G if and only if P is the only Sylow
p-subgroup of G. This also shows all Sylow p-subgroups of a finite group are isomorphic to

each other: if Q = gPg~!, then conjugation by g is an isomorphism from P to Q.

5. Third Sylow Theorem. Let G be a finite group and let p be a prime dividing |G|. Write
|G| = p*m, where k > 0 and m is not divisible by p. Then the number np of Sylow p-subgroups
of G satisfies n, = 1 mod p and n, | m. (While often not stated explicitly as part of the
third Sylow theorem, in the course of proving it one can show n, = [G : N(P)], where P is a

Sylow p-subgroup and N(P) is its normalizer.)

The different parts of the Sylow theorems are proved by different group actions.

Examples

1. Let G = S, and let p be a prime dividing n!. Then p is a prime less than or equal to n, and an
example of a permutation in S,, with orderp is the p-cycle (12...p). This illustrates Cauchy’s

theorem.
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2. Let G = D, so |G| = 2n. If p = 2 then s has order 2. If p is an odd prime factor of 2n then

p | n and /P is an element of D,, with order p. This illustrates Cauchy’s theorem.

3. Let G be a finite abelian group. Then by the Fundamental Theorem of Finite Abelian Groups,

there is an isomorphism

G = (Z/p\" Z) x (Z/p3* L) x - - X (L] py" ),
so |G| = pi*ps? - p2n. If p is a prime dividing |G|, then p = p; for some i. Under the
isomorphism above, there is a subgroup H of G isomorphic to Z/pj*Z, so H is cyclic. If g is
a generator of H, then g”?r1 is an element of G with order p; = p. This illustrates Cauchy’s

theorem.

4. Let G = S3. The order of |G| is 6 = 2-3. Its Sylow 2-subgroups have order 2 and its
Sylow 3-subgroups have order 3. By the third Sylow theorem, ny = 1 mod 2 and ny | 3, while

n3 = 1 mod 3 and n3 mod 2. Therefore ny is 1 or 3 while n3 = 1.

There are three Sylow 2-subgroups of S3: ((12)), ((13)) and ((23)), which are all conjugate
to each other; that illustrates the 2nd Sylow theorem. The only Sylow 3-subgroup is As =
{(1), (123), (132) }, which is a normal subgroup of Ss.

5. We will use the Sylow theorems to show every group of order 15 is cyclic. Let |G| = 15 =3-5.
A Sylow 3-subgroup of G has order 3 and a Sylow 5-subgroup of G has order 5. In G there
is an element x with order 3 and element y with order 5 (Cauchy’s theorem). Then (z) is a
Sylow 3-subgroup and (y) is a Sylow 5-subgroup. By Sylow’s third theorem, ng = 1 mod 3 and
n3 | 5, s0 ng = 1. Also ns =1 mod 5 and njy | 3, so ns = 1. Hence (z) and (y) are both normal
subgroups of G. Their intersection (x) N (y) is trivial since this intersection is a subgroup with

order dividing 3 and 5, hence of order 1.

We show = and y commute. Consider zyx~'y~!. Writing this as (zyx =)y, it lies in (y) since
ryz—t € x(y)r~! = (y) (the subgroup (y) is normal in G). Writing this as z(yr~1y~1), it lies
in (z) since yr~ly=! € y(z=Hy~! = (x). Thus ayz~ty~! € (x) N {y) = {e}, so zyx~ly~! =e,
which means xy = yz. Hence (zy)" = a'y® for all integers i.

The order of each element of G is 1, 3, 5, or 15. We don’t have (zy)! = e, as otherwise y = 27!

but the two sides have different orders. If (zy)® = e then 23y3 = ¢, so y* = e, which is false
(the order of y is 5). If (zy)® = e then 25y = e, so 2° = e, which is false (the order of x is
3, which doesn’t divide 5). Hence the only option left is that xy has order 15, which implies

G = (zy), which proves G is cyclic.

6. If |G| = 100 then a Sylow 2-subgroup has order 4 and a Sylow 5-subgroup has order 25 (and
the Sylow p-subgroup of G for p # 2,5 is trivial). By Sylow’s third theorem, ns = 1 mod 5
and ns | 4, so ns = 1: the Sylow 5-subgroup of G is normal. Also ns = 1 mod 2 and ns | 25,

so ng might be 1, 5, or 25. There is at least one group realizing each of the options for ns:

e if G =7Zjpo then ny =1 (in an abelian group all subgroups are normal),
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e if G = D5 X Zjp then (s) x (5 mod 10) = {(1,0), (s,0), (1,5), (s,5)} is a subgroup of order
4, hence is a Sylow 2-subgroup. Conjugating this subgroup (which leads to all other
Sylow 2-subgroups of G), we get 4 additional subgroups by replacing s with the 4 other
reflections in Ds. Thus ny = 5.

e if G = D5 x D5 then each Dy has 5 reflections, hence 5 subgroups of order 2, so in D5 x Dy
we can get Sylow 2-subgroups as H x K where H and K are subgroups of order 2 in Ds.
Since H and K each have 5 options, the number of different subgroups H x K in G is
52 = 25, s0 ng > 25. From ny € {1,5,25}, we get ny = 25.

7. If |G| = 24 then a Sylow 2-subgroup has order 8 while a Sylow 3-subgroup has order 3 (and a
Sylow p-subgroup for primes p > 3 is trivial). From the third Sylow theorem, no = 1 mod 2
and ng | 3, while n3 = 1 mod 3 and ng | 8. Thus ny = 1 or 3 while ng = 1 or 4. Below is
a table of non-abelian groups of order 24 that we want to show are nonisomorphic. In the

second column is a calculation of their centers, which for direct products uses the formula
Z(Gx H)=Z(G)x Z(H).

G Z(G)
Si {(m}
D12 {1,7"6}

Ay xZs | {(1)} x Zo
Qs X Z3 | {£1} x Zs
Dy xZs | {1,r2} x Zs
D3 x Zy {1} x Z4
D3y x 73 | {1} x Z3
SLo(Z3) {£I}

Isomorphic groups must have isomorphic centers, so let’s collect the groups based on the size

of their center.

e Center of order 1: Sy.

e Center has order 2: Dis, Ay X Zg, and SLo(Z3).

e Center of order 4: D3 x Z4 and D3 x Z3.

e Center of order 6: Qg X Z3 and D4 X Zg3.
Thus counting the size of the center distinguishes S; from the remaining groups. The groups
D3 x Zy and D3 x Z3 are not isomorphic because, even though their centers both have order

4, the centers are not isomorphic: the first group has a cyclic center and the second group has

a noncyclic center.

To prove the remaining groups with center of equal size are not isomorphic, we look at their
Sylow 2-subgroups: the Sylow p-subgroups of a group are conjugate to each other and thus
are isomorphic to each other, so if two groups have nonisomorphic Sylow p-subgroups for some

prime p, the groups can’t be isomorphic to each other.
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e It can be shown that Djs has ny = 3 while Ay x Zs and SLy(Zs) have ne = 1, so
D15 is not isomorphic to Ay x Zg or SLa(Zs). The Sylow 2-subgroup of Ay x Zs is
{(1),(12)(34), (13)(24), (14)(23)} x Zs = Z3 and the Sylow 2-subgroup of SLy(Z3) is
isomorphic to Qg. Therefore A4 X Zs and SLa(Z3) are not isomorphic, since their Sylow

2-subgroups are not isomorphic.

e The groups Qg X Zz and Dy X Z3 both have no = 1: a unique Sylow 2-subgroup. The
Sylow 2-subgroup of Qg x Z3 is Qs x {0} = Qs, and the Sylow 2-subgroup of Dy X Zj
is Dy x {0} = Dy. Since Qs and Dy are not isomorphic (different number of elements of

order 2), Qg X Zz and D4 x Z3 are not isomorphic.

Non-examples

1.

In a group of order 75 = 3 - 25, subgroups of order 5 are not Sylow 5- subgroups: the Sylow

5-subgroups are those subgroups having maximal 5-power order, which is 25 rather than 5.

. Not every element of a finite group is in some Sylow subgroup: only elements of prime-power

order can be in one (and they are).
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